K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 12 2016

số giao điểm chính là nghiệm hai pt bằng nhau

NV
26 tháng 3 2021

Đáp án B

Hàm bậc nhất trên bậc nhất không có cực trị

AH
Akai Haruma
Giáo viên
25 tháng 3 2021

Lời giải:

$f'(x)=0\Leftrightarrow x=0; x=1; x=3; x=2$.

BBT:

undefined

Từ BBT suy ra điểm cực tiêu là $x=0$

 

NV
14 tháng 4 2020

Ko thể dịch nổi đề câu 1 a;b, chỉ đoán thôi. Còn câu 2 thì thực sự là chẳng hiểu bạn viết cái gì nữa? Chưa bao giờ thấy kí hiệu tích phân đi kèm kiểu đó

Câu 1:

a/ \(\int\frac{2x+4}{x^2+4x-5}dx=\int\frac{d\left(x^2+4x-5\right)}{x^2+4x-5}=ln\left|x^2+4x-5\right|+C\)

b/ \(\int\frac{1}{x.lnx}dx\)

Đặt \(t=lnx\Rightarrow dt=\frac{dx}{x}\)

\(\Rightarrow I=\int\frac{dt}{t}=ln\left|t\right|+C=ln\left|lnx\right|+C\)

c/ \(I=\int x.sin\frac{x}{2}dx\)

Đặt \(\left\{{}\begin{matrix}u=x\\dv=sin\frac{x}{2}dx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=dx\\v=-2cos\frac{x}{2}\end{matrix}\right.\)

\(\Rightarrow I=-2x.cos\frac{x}{2}+2\int cos\frac{x}{2}dx=-2x.cos\frac{x}{2}+4sin\frac{x}{2}+C\)

d/ Đặt \(\left\{{}\begin{matrix}u=ln\left(2x\right)\\dv=x^3dx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=\frac{2dx}{2x}=\frac{dx}{x}\\v=\frac{1}{4}x^4\end{matrix}\right.\)

\(\Rightarrow I=\frac{1}{4}x^4.ln\left(2x\right)-\frac{1}{4}\int x^3dx=\frac{1}{4}x^4.ln\left(2x\right)-\frac{1}{16}x^4+C\)

AH
Akai Haruma
Giáo viên
3 tháng 7 2018

Lời giải:
Ta có: \(y=mx^3-x^2+3x+m-2\)

\(\Rightarrow y'=3mx^2-2x+3\)

Để hàm $y$ đồng biến trên khoảng $(-3;0)$ thì :

\(y'= 3mx^2-2x+3\geq 0, \forall x\in(-3;0)\)

\(\Rightarrow m\geq \frac{2x-3}{3x^2}, \forall x\in (-3;0)\)

Xét hàm \(g(x)=\frac{2x-3}{3x^2}\)\(g'(x)=\frac{-2(x-3)}{3x^3}=0\Leftrightarrow x=3\) (bỏ vì \(x\in (-3;0)\) )

Lập BTT ta thấy \(f(x)< f(-3)=\frac{-1}{3}\) với mọi \(x\in (-3;0)\)

Do đó \(m\geq \frac{-1}{3}\)

Nếu xét trắc nghiệm thì đáp án A,C đều đúng.

NV
24 tháng 3 2021

\(y'=x^2-2x+1=\left(x-1\right)^2\ge0\) ;\(\forall x\in R\)

\(\Rightarrow\) Hàm đồng biến trên R

NV
29 tháng 3 2021

\(\sqrt{4-x}\ge0\) với mọi x thuộc TXĐ nên \(y=\sqrt{4-x}+\sqrt{3}\ge\sqrt{3}\)

Đáp án D

Câu 2: B

Câu 3: A