![](https://rs.olm.vn/images/avt/0.png?1311)
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
PT
1
![](https://rs.olm.vn/images/avt/0.png?1311)
CM
Cao Minh Tâm
27 tháng 3 2017
Đúng(0)
Các câu hỏi dưới đây có thể giống với câu hỏi trên
SG
1
![](https://rs.olm.vn/images/avt/0.png?1311)
8 tháng 5 2017
\(y'\left(x\right)=\left(x^2\right)'sinx+x^2.\left(sinx\right)'\)\(=2x.sinx+x^2.cosx\)
\(y''\left(x\right)=\left[2x.sinx+x^2.cosx\right]'\)\(=\left(2xsinx\right)'\)\(+\left(x^2.cosx\right)'\)
\(=2sinx+2xcosx+2x.cosx+x^2.\left(-sinx\right)\)\(=2sinx+4x.cosx-x^2sinx\).
![](https://rs.olm.vn/images/avt/0.png?1311)
17 tháng 8 2023
tham khảo:
a)\(y'=xsin2x+sin^2x\)
\(y'=sin^2x+xsin2x\)
b)\(y'=-2sin2x+2cosx\\ y'=2\left(cosx-sin2x\right)\)
c)\(y=sin3x-3sinx\)
\(y'=3cos3x-3cosx\)
d)\(y'=\dfrac{1}{cos^2x}-\dfrac{1}{sin^2x}\)
\(y'=\dfrac{sin^2x-cos^2x}{sin^2x.cos^2x}\)