Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(x^2y^2-x^2+\left(\dfrac{1}{2}\right)^6x=x^2y^2-x^2+\dfrac{1}{64}x\)
\(\Rightarrow\) đa thức bậc 4
b) \(\left(-9x^2\right)\dfrac{1}{3}y+y\left(-x^2\right)+24x\left(\dfrac{-1}{4}xy\right)\)
\(=-3x^2y-x^2y-6x^2y\)
\(=-10x^2y\)
Thay \(x=1;y=-1\) vào đa thức ta có:
\(-10x^2y=-10.1^2.\left(-1\right)=10\)
a) A+(x2+y2)=5x2+3y2−xy
⇒A=(5x2+3y2−xy)−(x2+y2)
=(5−1)x2+(3−1)y2−xy
=4x2+2y2−xy
b) A−(xy+x2−y2)=x2+y2
⇒A=(x2+y2)+(xy+x2-y2)
=(1+1)x2+(1−1)y2+xy
=2x2+xy
\(M+N=3x^2-5y^3+2x^2+y^3-1\)
\(=\left(3x^2+2x^2\right)+\left(-5y^3+y^3\right)-1\)
\(=5x^3-4y^3-1\)
\(M-N=3x^2-5y^3-2x^2-y^3+1\)
\(=\left(3x^2-2x^2\right)+\left(-5y^3-y^3\right)+1\)
\(=x^2-6y^3+1\)
a) \(B=-\frac{1}{2}x^3y\left(-2xy^2\right)^2\)
\(B=\left(-\frac{1}{2}.-2\right).\left(x^3.x\right)\left(y.y^2\right)^2\)
\(B=1x^4y^5\)
Hệ số: 1
Bậc: 9
Chưa định hình phần b) nó là như nào
a.\(x=0;y=-1\)
\(\Rightarrow2.0-\dfrac{-1\left(0^2-2\right)}{0.-1-1}=0-\dfrac{2}{-1}=2\)
b.\(x=2\)
\(\Rightarrow4.2^2-3\left|2\right|-2=16-6-2=8\)
\(x=-3\)
\(\Rightarrow4.\left(-3\right)^2-3\left|-3\right|-2=36-9-2=25\)
c.\(x=-\dfrac{1}{5};y=-\dfrac{3}{7}\)
\(\Rightarrow5.\left(-\dfrac{1}{5}\right)^2-7.\left(-\dfrac{3}{7}\right)+6=5.\dfrac{1}{25}+3+6=\dfrac{1}{5}+3+6=\dfrac{46}{5}\)
thay x=2 và biểu thức A ta đc
\(A=4.2^2-3.\left|2\right|-2=4.4-6-2=16-6-2=8\)
thay x=-3 biểu thức A ta đc
\(A=4.\left(-3\right)^2-3.\left|-3\right|-2=4.9-9-2=36-9-2=25\)
thay x=-1/5 ; y=-3/7 biểu thức B ta đc
\(B=5.\left(-\dfrac{1}{5}\right)^2-7.\left(-\dfrac{3}{7}\right)+6\)
\(B=5\cdot\dfrac{1}{25}+3+6\)
\(B=\dfrac{1}{5}+3+6=\dfrac{46}{5}\)
\(\left(x^4-y+y^2+xy\right)-T=x^4+7y-6+xy\)
\(\text{⇔}T=\left(x^4-y+y^2+xy\right)-\left(x^4+7y-6+xy\right)\)
\(\text{⇔}T=x^4-y+y^2+xy-x^4-7y+6-xy\)
\(\text{⇔}T=y^2-8y+6\)