Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(P+\left(4x^2-5xy-y^2\right)=5x^2+10xy-2y^2\)
\(P=5x^2+10xy-2y^2-4x^2+5xy+y^2\)
\(P=x^2+15xy-y^2\)
Vậy....
b) \(\left(2xy+y^2\right)-P=3x^2-6xy+y^2\)
\(P=2xy+y^2-3x^2+6xy-y^2\)
\(P=-3x^2+8xy\)
Vậy....
a) P + ( 4x2 - 5xy - y2 ) = 5x2 + 10xy - 2y2
<=> P = 5x2 + 10xy - 2y2 - ( 4x2 - 5xy - y2 )
= 5x2 + 10xy - 2y2 - 4x2 + 5xy + y2
= x2 + 15xy - y2
b) ( 2xy + y2 ) - P = 3x2 -6xy + y2
<=> P = ( 2xy + y2) - ( 3x2 - 6xy + y2 )
= 2xy + y2 - 3x2 + 6xy -y2
= 8xy - 3x2
\(=6x^3y^3-x^4y-\dfrac{7}{2}xy^2-5x^4y-6x^3y^3\)
\(=-\dfrac{7}{2}xy^2-6x^4y\)
a, A=\(\left(2x^2y-4xy^3\right)-\left(3x^2y-2xy^3\right)\)
= \(2x^2y-2xy^3-3x^2y+2xy^3\)
= \(2x^2y-3x^2y-2xy^3+2xy^3\)
=\(-1x^2y-0\)
=\(-1x^2y\)
Bn tự làm tiếp nhé
Ta có: đa thức: \(C\left(x\right)=3x^2+12\)
Mà \(3x^2\ge0\)
Do đó: \(3x^2+12\ge12>0\)
Do đó da thức trên vô nghiệm
p=128
Ta có:
P+(2xy+y2)=(2x5-5xy-y2)-(6xy-y2+7)
P+2xy+y2=2x5-5xy-y2-6xy+y2-7
P+2xy+y2=2x5-(5xy+6xy)-(y2-y2)-7
P+2xy+y2=2x5-11xy-7
P=(2xy+y2)-(2x5-11xy-7)
P=2xy+y2-2x5+11xy+7
P=(2xy+11xy)+y2-2x5+7
P=13xy+y2-2x5+7