Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\left(x+\sqrt{x^2+2018}\right)\left(y+\sqrt{y^2+2018}\right)=2018\)
\(\Rightarrow\left\{{}\begin{matrix}2018\left(x+\sqrt{x^2+2018}\right)=2018\left(\sqrt{y^2+2018}-y\right)\\2018\left(y+\sqrt{y^2+2018}\right)=2018\left(\sqrt{x^2+2018}-x\right)\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x+\sqrt{x^2+2018}=\sqrt{y^2+2018}-y\\y+\sqrt{y^2+2018}=\sqrt{x^2+2018}-x\end{matrix}\right.\)
Cộng vế với vế:
\(x+y=-x-y\Rightarrow x=-y\)
\(\Rightarrow x^{2019}=-y^{2019}\Rightarrow x^{2019}+y^{2019}=0\)
![](https://rs.olm.vn/images/avt/0.png?1311)
gọi g(x) là thương phép chia
số dư có dạng ax+b
đặt x^99 + x^55 + x^11 + 7 = f(x)
ta có
f(x) = g(x) . (x^2 - 1) +ax+b
x = 1
=> f(1) = g(1) . (1^2 - 1) + a+b
11 = a+b
x=-1
=> f(-1) = g(-1) . (-1^2 - 1) -a+b
=> 3 = -a+b
ta có
a+b = 11
b-a = 3
=> 2a = 8
=> a=4
b=7
thương phép chia là 4a+7
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 1:
Đặt 2018=a
\(B=\sqrt{1+a^2+\dfrac{a^2}{\left(a+1\right)^2}}+\dfrac{a}{a+1}\)
\(=1+a-\dfrac{a}{a+1}+\dfrac{a}{a+1}=1+a=2019\)
![](https://rs.olm.vn/images/avt/0.png?1311)
1
do x,y bình đẳng như nhau giả sử \(x\ge y\)
Ta có:x2018+y2018=2
mà \(x^{2018}\ge0,y^{2018}\ge0\)
\(\Rightarrow x^{2018}+y^{2018}\ge0\)
Do \(x^{2018}+y^{2018}=2=1+1=2+0\)(do x lớn hơn hoặc bằng y)
Với \(x^{2018}+y^{2018}=1+1\)\(\Rightarrow x^{2018}=y^{2018}=1\)
\(\Rightarrow x=y=1;x=y=-1;x=1,y=-1\)(do x lớn hơn hoặc bằng y)
\(\Rightarrow Q=1+1=2\)\(\left(1\right)\)
Với \(x^{2018}+y^{2018}=2+0\)\(\Rightarrow x^{2018}=2\)(vô lý vỳ x,y thuộc Z)
Vậy........................
![](https://rs.olm.vn/images/avt/0.png?1311)
Câu 1:
a)
\(A=\sqrt{2018}-\sqrt{2017}=\frac{2018-2017}{\sqrt{2018}+\sqrt{2017}}=\frac{1}{\sqrt{2018}+\sqrt{2017}}> \frac{1}{\sqrt{2019}+\sqrt{2018}}=\frac{2019-2018}{\sqrt{2019}+\sqrt{2018}}=\sqrt{2019}-\sqrt{2018}=B\)
Vậy $A> B$
b)
\(x+\frac{1}{x}=3\Rightarrow (x+\frac{1}{x})^2=9\Rightarrow x^2+\frac{1}{x^2}+2=9\Rightarrow x^2+\frac{1}{x^2}=7\)
\(x^3+\frac{1}{x^3}=(x^2+\frac{1}{x^2})(x+\frac{1}{x})-(x+\frac{1}{x})=7.3-3=18\)
Do đó:
\(D=x^5+\frac{1}{x^5}=(x^2+\frac{1}{x^2})(x^3+\frac{1}{x^3})-(x+\frac{1}{x})=7.18-3=123\)
Annie Scarlet ko bt lm.... kkk
@Băng Băng 2k6