K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 6 2017

P(x) là đa thức bậc ba => P(x)=ax3 + bx2 + cx + d

Theo đề, P(x) chia x-1; x-2; x-3 đều dư 6

=> P(1)=6; P(2)=6;P(3)=6 và P(-1)=1

+) P(1)= a+b+c+d=6

+) P(2)=8a+4b+2c+d=6

+) P(3)=27a+9b+3c+d=6

+) P(-1) = -a+b-c+d=1

Nhập các hệ số vào máy tính (giải hệ pt 4 ẩn trên MTCT Vinacal)

=> \(a=\dfrac{5}{24};b=\dfrac{-5}{4};c=\dfrac{55}{24};d=\dfrac{19}{4}\)

Vậy P(x)=\(\dfrac{5}{24}x^3-\dfrac{5}{4}x^2+\dfrac{55}{24}x+\dfrac{19}{4}\)

P/s: Mik có làm gì sai ko nhỉ?! Nếu có gì sai sót mong mn sửa giúp mik! Tks

6 tháng 6 2017

Cách 2. Mình góp thêm một cách, các bạn cho ý kiến:
P(x) khi chia cho x - 1, x - 2, x - 3 đều dư 6 và P(x) bậc ba nên:
\(P\left(x\right)=a\left(x-1\right)\left(x-2\right)\left(x-3\right)+6\).
Do \(P\left(-1\right)=1\) nên: \(a\left(-1-1\right)\left(-1-2\right)\left(-1-3\right)+6=1\).
Suy ra \(-24a=-5\) hay \(a=\dfrac{5}{24}\).

24 tháng 8 2017

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

24 tháng 8 2017

- Viết lại rùi làm sau nha!!!

1) Đa thức f(x) chia cho x+1 dư 4, chia cho  dư 2x+3. 

- Tìm dư của phép chia f(x) cho  

2) Tìm đa thức bậc 3: P(x) biết khi chia P(x) cho x-1; x-2; x-3; đều dư 6 và f(-1) = 18.

3) Tìm x để:

 chia hết cho đa thức:

24 tháng 8 2017

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

7 tháng 10 2021

Gọi \(P\left(x\right)=ax^3+bx^2+cx+d\)

Ta có \(P\left(x\right):\left(x-1\right)R6\Leftrightarrow P\left(1\right)=a+b+c+d=6\left(1\right)\)

\(P\left(x\right):\left(x+2\right)R6\Leftrightarrow P\left(-2\right)=-8a+4b-2c+d=-2\left(2\right)\)

\(P\left(x\right):\left(x-4\right)R6\Leftrightarrow P\left(4\right)=64a+16b+4c+d=6\left(3\right)\)

\(P\left(-1\right)=16\Leftrightarrow-a+b-c+d=16\left(4\right)\)

Từ \(\left(1\right)\left(2\right)\left(3\right)\left(4\right)\Leftrightarrow\left\{{}\begin{matrix}a+b+c+d=6\\-8a+4b-2c+d=6\\64a+16b+4c+d=6\\-a+b-c+d=16\end{matrix}\right.\)

\(\Leftrightarrow a=1;b=-3;c=-6;d=14\)

Vậy \(P\left(x\right)=x^3-3x^2-6x+14\)

24 tháng 8 2017

Đặt \(P(x)=ax^3+bx^2+cx+d\)

\(P(x)\) chia cho \((x-1),(x-2),(x-3)\) đều dư \(6\) nên \(P(1)=P(2)=P(3)=6\)

Ta có:

\(P(1)=6\Rightarrow a+b+c+d=6 \\P(2)=6\Rightarrow 8a+4b+2c+d=6 \\P(3)=6\Rightarrow 27a+9b+3c+d=6 \\P(-1)=-a+b-c+d=-18\)

Giải hệ trên ta được \(a=1;b=-6;c=11;d=0\Rightarrow P(x)=x^3-6x^2+11x\)