Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(P(x)=ax^3+bx^2+cx+d\)
\(P(x)\) chia cho \((x-1),(x-2),(x-3)\) đều dư \(6\) nên \(P(1)=P(2)=P(3)=6\)
Ta có:
\(P(1)=6\Rightarrow a+b+c+d=6 \\P(2)=6\Rightarrow 8a+4b+2c+d=6 \\P(3)=6\Rightarrow 27a+9b+3c+d=6 \\P(-1)=-a+b-c+d=-18\)
Giải hệ trên ta được \(a=1;b=-6;c=11;d=0\Rightarrow P(x)=x^3-6x^2+11x\)
Ta có: P(x) -6 chia hết cho 3 nhị thức x-1;x-2;x-3 nên x=1;x=2;x=3 là nghiệm của P(x)-6.
Vì P(x)-6 cũng bậc 3 như P(x) nên ta phải có biểu diễn:
P(x)-6=a(x-1)(x-2)(x-3)
=> P(x)=a(x-1)(x-2)(x-3)+6
P(-1)= -18 nên -24a+6=-18 <=> a =1
Vậy P(x)=(x-1)(x-2)(x-3)+6 =x^3-6x^2+11x
Ta có: P(x) -6 chia hết cho 3 nhị thức x-1;x-2;x-3 nên x=1;x=2;x=3 là nghiệm của P(x)-6.
Vì P(x)-6 cũng bậc 3 như P(x) nên ta phải có biểu diễn:
P(x)-6=a(x-1)(x-2)(x-3)
=> P(x)=a(x-1)(x-2)(x-3)+6
P(-1)= -18 nên -24a+6=-18 <=> a =1
Vậy P(x)=(x-1)(x-2)(x-3)+6 =x^3-6x^2+11x
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
- Viết lại rùi làm sau nha!!!
1) Đa thức f(x) chia cho x+1 dư 4, chia cho dư 2x+3.
- Tìm dư của phép chia f(x) cho
2) Tìm đa thức bậc 3: P(x) biết khi chia P(x) cho x-1; x-2; x-3; đều dư 6 và f(-1) = 18.
3) Tìm x để:
chia hết cho đa thức:
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
Gọi \(P\left(x\right)=ax^3+bx^2+cx+d\)
Ta có \(P\left(x\right):\left(x-1\right)R6\Leftrightarrow P\left(1\right)=a+b+c+d=6\left(1\right)\)
\(P\left(x\right):\left(x+2\right)R6\Leftrightarrow P\left(-2\right)=-8a+4b-2c+d=-2\left(2\right)\)
\(P\left(x\right):\left(x-4\right)R6\Leftrightarrow P\left(4\right)=64a+16b+4c+d=6\left(3\right)\)
\(P\left(-1\right)=16\Leftrightarrow-a+b-c+d=16\left(4\right)\)
Từ \(\left(1\right)\left(2\right)\left(3\right)\left(4\right)\Leftrightarrow\left\{{}\begin{matrix}a+b+c+d=6\\-8a+4b-2c+d=6\\64a+16b+4c+d=6\\-a+b-c+d=16\end{matrix}\right.\)
\(\Leftrightarrow a=1;b=-3;c=-6;d=14\)
Vậy \(P\left(x\right)=x^3-3x^2-6x+14\)