K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 1 2017

(Nội suy đa thức, nhỉ?)

Để giải dạng bài này anh thường làm như sau:

Bước 1: Tìm coi \(P\left(x\right)\) có giả thiết gì rồi.

Qua các giả thiết đề cho ta biết được \(P\left(-2\right)=0\),  \(P\left(1\right)=6\) và  \(P\left(-1\right)=4\).

-----

Bước 2: Nội suy.

Viết \(P\left(x\right)\) dưới dạng \(a\left(x+2\right)+b\left(x+2\right)\left(x+1\right)+c\left(x+2\right)\left(x+1\right)\left(x-1\right)+d\).

Ta có \(P\left(-2\right)=d=0\).

Lại có \(P\left(-1\right)=a+d=4\Rightarrow a=4\)

Lại có \(P\left(1\right)=3a+6b+d=6\Rightarrow b=-1\).

Vậy đa thức \(P\left(x\right)=c\left(x+2\right)\left(x+1\right)\left(x-1\right)-\left(x+2\right)\left(x+1\right)+4\left(x+2\right)\) với \(c\) tuỳ ý

Bài 1 : Đa thức chia là bậc 2 do đó đa thức dư nhiều nhất sẽ là bậc 1 .

Ta có : \(P\left(x\right)=Q\left(x\right).\left(x^2-5x+6\right)+ax+b\)

Theo bài ra ta có hệ phương trình :

\(\left\{{}\begin{matrix}P\left(2\right)=2a+b=-2\\P\left(3\right)=3a+b=-3\end{matrix}\right.\)

Giải hệ phương trình ta tìm được :

\(\left\{{}\begin{matrix}a=-1\\b=0\end{matrix}\right.\)

Vậy số dư trong phéo chia là \(-x\)

Bài 2 : Mình suy nghĩ sau !

Chúc bạn học tốt

1 tháng 5 2021

quá đơn giản

13 tháng 5 2021

đơn giản thì trả lời đi , fly color à bạn :))) 

1 tháng 11 2024

Gọi thương của P(x) khi chi cho (x-2), (x-3) lần lượt là A(x),B(x)               =>P(x)=(x-2).A(x)+5  (1)      và P(x)=(x-3).B(x)=7 (2)                               Gọi thương của P(x) khi chia cho (x-2).(x-3) là C(x) và dư là R(x)           Ta có : (x-2)(x-3) có bậc là 2 =>  R(x) có bậc là 1 => R(x) có dạng ax+b  (a,b là số nguyên )                                                             =>R(x)=(x-2)(x-3).C(x)+ax+b  (3)                                                         thay x=2 vào (1) và (3) ta có: P(x)=2a+b=5                                            thay x=3 vào (2) và (3) ta có: P(x)=3a+b=7                                         => a=2,b=1 =>R(x)=2x+1                                                                      Vậy dư của P(x) khi chia cho (x-2)(x-3) là 2x+1

14 tháng 3 2017

F(-2)=0=> -8a+4b+c=0 (1)

f(1)=6=> a+b+c=6 (2)

f(-1)=4=> -a+b+c=4 (3)

(2) trừ (3)=> 2a=2=> a=1; thay vào (3)=> c=5-b thay vào (1)

-8+4b+5-b=0=> b=1

\(\left\{{}\begin{matrix}a=-1\\b=1\\c=4\\f\left(x\right)=-x^3+x^2+4\end{matrix}\right.\)