Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B-2x^2y^3z^2+\frac{2}{3}y^4-\frac{1}{5}x^4y^3=A\)
\(\Rightarrow B=A+2x^2y^3-\frac{2}{3}y^4+\frac{1}{5}x^4y^3\)
\(\Rightarrow B=-4x^5y^3+x^4y^3\cdot3x^2y^3z^2+4x^5y^3+x^2y^3z^2-2y^4+2x^2y^3z^2-\frac{2}{3}y^4+\frac{1}{5}x^4y^3\)
\(=\left(-4x^5y^3+4x^5y^3\right)+\left(x^2y^3z^2+2x^2y^3z^2\right)+x^4y^3\cdot3x^2y^3z^2-\left(2y^4+\frac{2}{3}y^4\right)-\frac{1}{5}x^4y^3\)
\(=3x^2y^3z^2+x^4y^3\cdot3x^2y^3z^2-\frac{8}{6}y^4-\frac{1}{5}x^4y^3\)
a) Đặt A(x)=0
\(\Leftrightarrow4x-1=0\)
\(\Leftrightarrow4x=1\)
hay \(x=\dfrac{1}{4}\)
b) Đặt B(x)=0
\(\Leftrightarrow2x^2-8=0\)
\(\Leftrightarrow2x^2=8\)
\(\Leftrightarrow x^2=4\)
hay \(x\in\left\{2;-2\right\}\)
\(P\left(x\right)=5x^2+3x-4-2x^3+4x^2-6\)
\(P\left(x\right)=\left(5x^2+4x^2\right)+3x+\left(-4-6\right)-2x^3\)
\(P\left(x\right)=9x^2+3x-10-2x^3\)
\(Q\left(x\right)=2x^4-x+3x^2-2x^3+\frac{1}{4}-x^5\)
\(Q\left(x\right)=2x^4-x+3x^2-2x^3+\frac{1}{4}-x^5\)
Sắp giảm :
\(P\left(x\right)=-2x^3+9x^2+3x-10\)
\(Q\left(x\right)=-x^5+2x^4-2x^3+3x^2-x+\frac{1}{4}\)
\(A\left(x\right)=P\left(x\right)+Q\left(x\right)\)
\(A\left(x\right)\)= \(\left[\left(-2x^3+9x^2+3x-10\right)-\left(-x^5+2x^4-2x^3+3x^2-x+\frac{1}{4}\right)\right]\)
\(A\left(x\right)=\)\(-2x^3+9x^2+3x-10+x^5-2x^4+2x^3-3x^2+x-\frac{1}{4}\)
\(A\left(x\right)=\)\(\left(-2x^3+2x^3\right)+\left(9x^2-3x^2\right)+\left(3x-x\right)+\left(-10-\frac{1}{4}\right)+x^5-2x^4\)
\(A\left(x\right)=6x^2+2x-2,75+x^5-2x^4\)
a) (4x - 8)(1/2 - x) = 4(x - 2)(1/2 - x) = 0 => x - 2 = 0 hoặc 1/2 - x = 0 =>x = 2 ; 1/2
b) 2x2 - 32 = 2(x2 - 42) = 2(x - 4)(x + 4) = 0 => x - 4 = 0 hoặc x + 4 = 0 => x = 4 ; -4 (cách lớp 8 - áp dụng hằng đẳng thức đáng nhớ)
2x2 - 32 = 0 => 2x2 = 32 => x2 = 16 => x = -4 ; 4 (cách lớp 6 & 7)
\(\left(4x-8\right)\left(\frac{1}{2}-x\right)=0\)
\(\Rightarrow\orbr{\begin{cases}4x-8=0\\\frac{1}{2}-x=0\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{8}{4}=2\\x=\frac{1}{2}\end{cases}}}\)
\(2x^2-32=0\)
\(\Rightarrow2\left(x^2-16\right)=0\)
\(\Rightarrow2\left(x-4\right)\left(x+4\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-4=0\\x+4=0\end{cases}\Rightarrow\orbr{\begin{cases}x=4\\x=-4\end{cases}}}\)
a: P(-1)=2
=>-m-3=2
=>-m=5
=>m=-5
c: P(0)=0-3=-3
P(-1)=4-3=1
b: Q(1)=0
=>-2+m-7m+3=0
=>-6m+1=0
=>m=1/6
\(\frac{4x^2-16}{x^2+2x}=\frac{A}{x}\Rightarrow\frac{4.\left(x^2-4\right)}{x.\left(x+2\right)}=\frac{A}{x}\Rightarrow\frac{4.\left(x+2\right)\left(x-2\right)}{x.\left(x+2\right)}=\frac{A}{x}\Rightarrow\frac{4.\left(x-2\right)}{x}=\frac{A}{x}\Rightarrow A=\frac{4x\left(x-2\right)}{x}=4\left(x-2\right)=4x-8\)