Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
d, \(\frac{x+1}{9}+\frac{x+2}{8}=\frac{x+3}{7}+\frac{x+4}{6}\)
\(\Leftrightarrow\frac{x+1}{9}+1+\frac{x+2}{8}+1=\frac{x+3}{7}+1+\frac{x+4}{6}+1\)
\(\Leftrightarrow\frac{x+10}{9}+\frac{x+10}{8}-\frac{x+10}{7}-\frac{x+10}{6}=0\)
\(\Leftrightarrow\left(x+10\right)\left(\frac{1}{9}+\frac{1}{8}-\frac{1}{7}-\frac{1}{6}\right)=0\)
\(\Leftrightarrow x+10=0\) (Vì \(\frac{1}{9}+\frac{1}{8}-\frac{1}{7}-\frac{1}{6}\) ≠ 0)
\(\Leftrightarrow x=-10\)
Vậy x = -10 là nghiệm của phương trình.
![](https://rs.olm.vn/images/avt/0.png?1311)
\(b,\frac{3x-1}{x-1}-\frac{2x+5}{x+3}=1-\frac{4}{\left(x-1\right)\left(x+3\right)}\) \(\left(Đkxđ:\left\{{}\begin{matrix}x\ne1\\x\ne-3\end{matrix}\right.\right)\)
\(\Leftrightarrow\frac{3x-1}{x-1}-\frac{2x+5}{x+3}+\frac{4}{\left(x-1\right)\left(x+3\right)}=1\)
\(\Leftrightarrow\frac{\left(3x-1\right)\left(x+3\right)}{\left(x-1\right)\left(x+3\right)}-\frac{\left(2x+5\right)\left(x-1\right)}{\left(x-1\right)\left(x+3\right)}+\frac{4}{\left(x-1\right)\left(x+3\right)}=\frac{\left(x-1\right)\left(x+3\right)}{\left(x-1\right)\left(x+3\right)}\)
\(\Leftrightarrow\left(3x^2+8x-3\right)-\left(2x^2+3x-5\right)+4=x^2+2x-3\)
\(\Leftrightarrow x^2+5x+6=x^2+2x-3\)
\(\Leftrightarrow9=-3x\)
\(\Leftrightarrow x=-3\left(ktmđk\right)\)
\(\Leftrightarrow Ptvn\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a, 2x-1 thuộc ước của 2,rồi giải ra
b,c tương tự
d\(\frac{x^2-64-123}{x+8}=\frac{\left(x+8\right)\left(x-8\right)-123}{x+8}=x-8-\frac{123}{X+8}\) .........rồi làm tương tự như câu a,,,,,,,,,,,,còn câu e cũng gần giống câu d
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\Leftrightarrow\frac{5-2x}{3\left(3x-1\right)}+\frac{3\left(x^2-1\right)}{3\left(3x-1\right)}-\frac{\left(x+2\right)\left(1-3x\right)}{3\left(3x-1\right)}=0\)
\(\Rightarrow5-2x+3x^2-3-x+3x^2-2+6x=0\Leftrightarrow6x^2+3x=0\Leftrightarrow3x\left(2x+1\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x=-\frac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow-\frac{5x-2}{2\left(x-1\right)}+\frac{\left(2x-1\right)\left(x-1\right)}{2\left(x-1\right)}=\frac{1-x-x^2-x+3}{1-x}\Leftrightarrow\frac{2x^2-8x+3}{2\left(x-1\right)}=\frac{x^2+2x-4}{x-1}\)
\(\Rightarrow2x^2-8x+3=2x^2+4x-8\)\(\Leftrightarrow-8x+3=4x-8\Leftrightarrow-12x=-12\Rightarrow x=1\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Giải tiêu biểu câu a nhé.
a/ \(5x\left(2x-7\right)+2x\left(8-5x\right)=5\)
\(\Leftrightarrow19x+5=0\)
\(\Leftrightarrow x=-\frac{5}{19}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a)ĐKXĐ: x≠-1; x≠3
Ta có: \(\frac{3x+1}{x+1}-\frac{2x-5}{x-3}+\frac{7}{x^2-2x-3}=1\)
\(\Leftrightarrow\frac{3x+1}{x+1}-\frac{2x-5}{x-3}+\frac{7}{\left(x+1\right)\left(x-3\right)}-1=0\)
\(\Leftrightarrow\frac{\left(3x+1\right)\left(x-3\right)}{\left(x+1\right)\left(x-3\right)}-\frac{\left(2x-5\right)\left(x+1\right)}{\left(x-3\right)\left(x+1\right)}+\frac{7}{\left(x+1\right)\left(x-3\right)}-\frac{\left(x+1\right)\left(x-3\right)}{\left(x+1\right)\left(x-3\right)}=0\)
\(\Leftrightarrow3x^2-8x-3-\left(2x^2-3x-5\right)+7-\left(x^2-2x-3\right)=0\)
\(\Leftrightarrow3x^2-8x-3-2x^2+3x+5+7-x^2+2x+3=0\)
\(\Leftrightarrow-3x+12=0\)
\(\Leftrightarrow-3x=-12\)
hay x=4
Vậy: x=4
b) ĐKXĐ: x≠-2; x≠2
Ta có: \(\frac{x-2}{x+2}-\frac{3}{x-2}=\frac{2\left(x-11\right)}{x^2-4}\)
\(\Leftrightarrow\frac{\left(x-2\right)\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}-\frac{3\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\frac{2\left(x-11\right)}{\left(x-2\right)\left(x+2\right)}=0\)
\(\Leftrightarrow x^2-4x+4-\left(3x+6\right)-\left(2x-22\right)=0\)
\(\Leftrightarrow x^2-4x+4-3x-6-2x+22=0\)
\(\Leftrightarrow x^2-9x+20=0\)
\(\Leftrightarrow x^2-4x-5x+20=0\)
\(\Leftrightarrow x\left(x-4\right)-5\left(x-4\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(x-5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-4=0\\x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=5\end{matrix}\right.\)
Vậy: x∈{4;5}
![](https://rs.olm.vn/images/avt/0.png?1311)
a: \(A=\left(\dfrac{1}{x-1}+\dfrac{x}{\left(x-1\right)\left(x^2+x+1\right)}\cdot\dfrac{x^2+x+1}{x+1}\right)\cdot\dfrac{\left(x+1\right)^2}{2x+1}\)
\(=\left(\dfrac{1}{x-1}+\dfrac{x}{\left(x-1\right)\left(x+1\right)}\right)\cdot\dfrac{\left(x+1\right)^2}{2x+1}\)
\(=\dfrac{x+1+x}{\left(x-1\right)\left(x+1\right)}\cdot\dfrac{\left(x+1\right)^2}{2x+1}\)
\(=\dfrac{2x+1}{x-1}\cdot\dfrac{x+1}{2x+1}=\dfrac{x+1}{x-1}\)
b: Thay x=1/2 vào A, ta được:
\(A=\dfrac{\dfrac{1}{2}+1}{\dfrac{1}{2}-1}=\dfrac{3}{2}:\dfrac{-1}{2}=-3\)
c: Để A là số nguyên thì \(x-1+2⋮x-1\)
\(\Leftrightarrow x-1\in\left\{1;-1;2;-2\right\}\)
\(\Leftrightarrow x\in\left\{2;0;3\right\}\)
Em tham khảo: Câu hỏi của Nguyễn Tất Anh Quân - Toán lớp 8 - Học toán với OnlineMath cách phân tích:
\(x^8+x^7+1=\left(x^2+x+1\right)\left(x^6-x^4+x^3-x+1\right)\)
\(x^3-1=\left(x-1\right)\left(x^2+x+1\right)\)
\(\Rightarrow M=\frac{\left(x^8+x^7+1\right)\left(x-1\right)}{\left(x^3-1\right)}=\frac{\left(x^2+x+1\right)\left(x-1\right)\left(x^6-x^4+x^3-x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=x^6-x^4+x^3-x+1\)