K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 10 2018

Chọn D

15 tháng 4 2019

NV
23 tháng 3 2019

Đặt \(\left\{{}\begin{matrix}2^x=a\\3^y=b\\4^z=c\end{matrix}\right.\) (với \(a;b;c>0\)) \(\Rightarrow a^2+b^2+c^2=a+b+c\)

\(\Leftrightarrow\left(a-\frac{1}{2}\right)^2+\left(b-\frac{1}{2}\right)^2+\left(c-\frac{1}{2}\right)^2=\frac{3}{4}\)

Gọi \(M\left(a;b;c\right)\) thì M thuộc mặt cầu tâm \(I\left(\frac{1}{2};\frac{1}{2};\frac{1}{2}\right)\) bán kính \(R=\frac{\sqrt{3}}{2}\)

\(T=2^{x+1}+3^{y+1}+4^{z+1}=2.2^x+3.3^y+4.4^z=2a+3b+4c\)

\(\Rightarrow2a+3b+4c-T=0\)

Gọi (P) là mặt phẳng thay đổi có phương trình \(2x+3y+4z-T=0\)

\(\Rightarrow M\in\left(P\right)\Rightarrow M\) thuộc giao của mặt cầu và (P)

Mà mặt cầu giao với (P) khi và chỉ khi:

\(d\left(I;\left(P\right)\right)\le R\Leftrightarrow\frac{\left|2.\frac{1}{2}+3.\frac{1}{2}+4.\frac{1}{2}-T\right|}{\sqrt{2^2+3^2+4^2}}\le\frac{\sqrt{3}}{2}\)

\(\Leftrightarrow\left|T-\frac{9}{2}\right|\le\frac{\sqrt{87}}{2}\) \(\Rightarrow\frac{-\sqrt{87}}{2}\le T-\frac{9}{2}\le\frac{\sqrt{87}}{2}\)

\(\Rightarrow T\le\frac{9+\sqrt{87}}{2}\)

30 tháng 11 2017

Đáp án A

Phương pháp:

Dựa vào khái niệm cực trị và các kiến thức liên quan.

Cách giải:

(1) chỉ là điều kiện cần mà không là điều kiện đủ.

VD hàm số y = x3 có y' = 3x2 = 0 ⇔ x = 0. Tuy nhiên x = 0 không là điểm cực trị của hàm số.

(2) sai, khi f''(x0) = 0, ta không có kết luận về điểm x0 có là cực trị của hàm số hay không.

(3) hiển nhiên sai.

Vậy (1), (2), (3): sai; (4): đúng

25 tháng 3 2020

a) Hai mặt phẳng cắt nhau, vì 1: 2: (-1) ≠ 2: 3: (-7)

b) Hai mặt phẳng cắt nhau, vì: 1: (-2): 1 ≠ 2: (-1): 4

c) Hai mặt phẳng song song, vì: 1/2=1/2=1/2 ≠ -1/3

d) Hai mạt phẳng cắt nhau, vì: 3: (-2): 3 ≠ 9: (-6): (-9)

e) Hai mặt phẳng trung nhau, vì: 1/10=-1/(-10)=2/20=-4/(-40).

           #rin

10 tháng 5 2018

M∈ (S) : (x0 - 2)2 + (y0-1)2 +(z0-1)2 =9.

A=x0+2y0+2z0=(x0-2)+2(y0-1)+2(z0-1)+6

Dùng BĐT bunhiacopski

[(x0-2)+2(y0-1)+2(z0-1)]2 ≤ (1+4+4).[(x0 - 2)2 + (y0-1)2 +(z0-1)2 ]

≤ 81

-9 ≤ (x0-2)+2(y0-1)+2(z0-1) ≤ 9.

-3 ≤ A ≤ 12. vậy GTNN của A = -3.

Dấu bằng xảy ra khi :

x0+2y0+2z0 = -3

\(\dfrac{x0-2}{1}=\dfrac{y0-1}{1}=\dfrac{z0-1}{1}\)

Giải hệ được x0=1, y0=z0=-1. Suy ra: x0+y0+z0 = -1

NV
15 tháng 9 2021

\(a^2+b^2+6ab+2=2a+3b\Rightarrow\left(a+b\right)^2-3\left(a+b\right)+2=-a\left(4b+1\right)\le0\)

\(\Rightarrow\left(a+b-1\right)\left(a+b-2\right)\le0\Rightarrow1\le a+b\le2\)

\(a^2+b^2+6ab+2=2a+3b\Rightarrow4ab=-\left(a+b\right)^2+2a+3b-2\)

\(-P=\dfrac{6a+5b+4ab+7}{a+b+1}=\dfrac{6a+5a+7-\left(a+b\right)^2+2a+3b-2}{a+b+1}\)

\(=\dfrac{-\left(a+b\right)^2+8\left(a+b\right)+5}{a+b+1}\)

Tới đây có thể giải theo lớp 9 (tách thành tích hoặc bình phương) hoặc làm theo lớp 12 (khảo sát hàm \(f\left(x\right)=\dfrac{-x^2+8x+5}{x+1}\) trên \(\left[1;2\right]\)). Cả 2 việc đều dễ dàng cả

\(-P=6-\dfrac{\left(x-1\right)^2}{x+1}=\dfrac{17}{3}+\dfrac{\left(3x-1\right)\left(2-x\right)}{3\left(x+1\right)}\)

15 tháng 9 2021

Cảm ơn anh :33