Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Loại trừ số 1 ra thì tổng này có: (30-1):1+1=30 (số hạng)
Ta thấy: tổng của 4 số liên tiếp nhau (tính từ 3^1) có tận cùng là 0. Suy ra: 28 số như thế thì tận cùng vẫn là 0.
Mà trong tổng (trừ số 1) có 30 số hạng.
=> Tổng có tận cùng là 2. (vì theo quy luật tính từ 3^1 thì 4 số liên tiếp sẽ có tận cùng là 3, 9, 7, 1 rồi lại 3, 9, 7, 1, suy ra 2 số hạng còn lại của tổng là 3^29 và 3^30 thì có tận cùng lần lượt là 3, 9 cộng vào tận cùng là 2, 28 số hạng kia tận cùng là 0 cộng 2 vào nữa thì bằng 2)
A= 1+3^1+3^2+3^3+...+3^30 có tận cùng là 3 (tự suy nhé)
Mà số chính phương thì tận cùng là 1, 4, 5, 6, 9
Vậy A ko phải là số chính phương.
Bài 1: Gọi số đó là: \(\overline{ab5}\)
Ta có: \(\overline{5ab}-\overline{ab5}=288\)
\(\Leftrightarrow500+\overline{ab}-\left(10.\overline{ab}+5\right)=288\)
\(\Leftrightarrow500+\overline{ab}-10.\overline{ab}-5=288\)
\(\Leftrightarrow\left(500-5\right)-\left(10.ab-\overline{ab}\right)\)=288
\(\Leftrightarrow495-9.\overline{ab}=288\)
\(\Leftrightarrow9.\overline{ab}=495-288=207\)
\(\Leftrightarrow\overline{ab}=207:9=23\)
\(\Rightarrow\) số cần tìm là 23.
Bài 3: Gọi số cần tìm là \(\overline{ab}\)
Ta có: \(\overline{ab}+18=\overline{ba}\)
\(\Leftrightarrow10a+b+18=10b+a\)
\(\Leftrightarrow\left(10a-a\right)+18=10b-b\)
\(\Leftrightarrow9a+18=9b\)
\(\Leftrightarrow9\left(a+2\right)=9b\)
\(\Rightarrow a+2=b\)
\(\Rightarrow b=\left(8+2\right):2=5\)
\(\Rightarrow a=8-5=3\)
Vậy: số cần tìm là: \(35\)
1. Gọi số cần tìm là \(\overline{ab}5\), số sau khi chuyển là \(5\overline{ab}\), ta có :
5ab
- ab5
288
*b - 5 = 8 => b = 13 (viết 3 nhớ 1)
*a - b = a - 3 = 8 => a = 12 (viết 2 nhớ 1)
Vậy số cần tìm là 235.
bạn lên [onlinemath] đi sẽ có nhiều người giỏi giải giúp bạn nhé