Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(3^{2018}=3^{4.504}.3^2=...1.9=...9\)
Vậy chữ số tận cùng là 9
b) \(2^{1000}=2^{4.250}=...6\)
Vậy chữ số tận cùng là 6
a) ta có: A = 3^0 + 3^1 + 3^2 + ...+ 3^100
=> 3A = 3^1 + 3^2 + 3^3 + ...+ 3^101
=> 3A-A = 3^101 - 3^0
2A = 3^101 - 1
\(A=\frac{3^{101}-1}{2}\)
b) D = 1 - 5 + 5^2 - 5^3 + ...+ 5^98 - 5^99
=> 5D = 5 - 5^2 + 5^3 - 5^4+...+ 5^99 - 5^100
=> 5D+D = -5^100 + 1
6D = -5^100 + 1
\(D=\frac{-5^{100}+1}{6}\)
M=2+2^3+2^5+2^7+...+2^99(1)
=>4M=2^3+2^5+...+2^101(2)
Lấy (2)-(1) ta có :
=>3M=2^101-2
=>M=(2^101-2)/3
a) Ta có:
\(S=2+2^3+2^5+...+2^{59}\)
\(S=\left(2+2^3\right)+\left(2^5+2^7\right)+...+\left(2^{57}+2^{59}\right)\)
\(S=2.\left(1+2^2\right)+2^3.\left(1+2^2\right)+...+2^{57}.\left(1+2^2\right)\)
\(S=\left(2+2^3+2^5+...+2^{57}\right).5⋮5\)
Vậy \(S⋮5\)
a) Ta có:
\(S=2+2^3+2^5+...+2^{99}\)
\(S=\left(2+2^3\right)+\left(2^5+2^7\right)+...+\left(2^{97}+2^{99}\right)\)
\(S=2\left(1+2^2\right)+2^3\left(1+2^2\right)+...+2^{97}\left(1+2^2\right)\)
\(S=2.5+2^3.5+...+2^{97}.5\)
\(S=\left(2+2^3+...+2^{97}\right).5⋮5\)
\(\Rightarrow S⋮5\)
Câu 1
a) Gọi A, B, C, D, E, G, H là tập hợp các số từ 1 đến 1000 mà theo thứ tự chia hết cho 2, chia hết cho 3, chia hết cho 5, chia hết cho 2 và 3, chia hết cho 2 và 5, chia hết cho 3 và 5, chia hết cho cả 3 số. Số phần tử của các tập hợp đó theo thứ tự bằng S1, S2, S3, S4, S5, S6, S7.
Ta có : S1 = 1000 : 2 = 500 ;
S2 = [1000 : 3 ] = 333 ;
S3 = 1000 : 5 = 200 ;
S4 = [1000 : 6] = 166 ;
Câu 2
Các số phải đếm có dạng abc2 (có gạch ngang trên đầu)
Chữ số a có 9 cách chọn (1 ; 2 ; 3 ; ... ; 9).
Với mỗi cách chọn a, chữ số b có 10 cách chọn (0 ; 1 ; 2 ; ... ; 9)
Với mỗi cách chọn ab (có gạch ngang trên đầu), chữ số c có 5 cách chọn (1 ; 3 ; 5 ; 7 ; 9) để tạo với chữ số 2 tận cùng làm thành số chia hết cho 4.
Vậy tất cả có 9 . 10 . 5 = 450 (số)