K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
-Các số tự nhiên tận cùng bằng những số 2, 8 nâng lên lũy thừa 4n (\(n\ne0\)) đều có tận cùng là 6.
Nên \(2^{4n}=\overline{....6}\Rightarrow2^{4n+1}=\overline{.....2}\)
Vậy\(2^{4n+1}+2=\overline{....2}+2=\overline{.....4}\)
Kết luận: Chữ số tận cùng của \(2^{4n+1}+2\) là 4
Ta có:
\(2^{4n+1}+2=2\cdot\left(2^{4n}+1\right)\)
Mà: \(\forall n\Rightarrow2^{4n}\) luôn có chữ số tận cùng là 6
\(\Rightarrow2^{4n}+1\) có chữ số tận cùng là \(6+1=7\)
\(\Rightarrow2\cdot\left(2^{4n}+1\right)\) có chữ số tận cùng là 4 \(\left(2\cdot7=14\right)\)
Vậy: \(2^{4n+1}+2\) luôn có chữ số tận cùng là 4