Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Trước hết, ta tìm số dư của phép chia 99 cho 4:
99 – 1 = (9 – 1)(98 + 97 + … + 9 + 1) chia hết cho 4
=> 99 = 4k + 1 (k thuộc N) => 799 = 74k + 1 = 74k.7
Do 74k có chữ số tận cùng là 1 (theo tính chất 1c) => 799 có chữ số tận cùng là 7.
b) Dễ thấy 1414 = 4k (k thuộc N) => theo tính chất 1d thì 141414 = 144k có chữ số tận cùng là 6.
c) Ta có 567 – 1 chia hết cho 4 => 567 = 4k + 1 (k thuộc N)
=> 4567 = 44k + 1 = 44k.4, theo tính chất 1d, 44k có chữ số tận cùng là 6 nên 4567 có chữ số tận cùng là 4.
a) 799 = (....7) nên chữ số tận cùng là 7
b) 141414 = (....14) nên chữ số tận cùng là 4
c) 4567 = (...4) nên chữ số tận cùng là 4
d) 187324 = (....187) nên chữ số tận cùng là 7
a ) 8102 = 84.25+2 = ( 84 )25 . 82 = ( ...6 )25 . 64 = ( ...6 ) . 64 = ( ...4 )
b ) 2102 = 24.25+2 = ( 24 )25 . 22 = 1625 . 4 = ( ...6 ) . 4 = ( ...4 )
c ) 175 = 174 . 17 = ( ...1 ) . 17 = ( ...7 )
d ) 244 = 242.2 = ( 242 )2 = ( ...6 )2 = ( ...2 )
e ) 1321 = 134.5+1 = ( 134 )5 . 131 = ( ...1 )5 . 13 = ( ...1 ) . 13 = ( ...3 )
g ) 9999 = 992.49+1 = ( 992 )49 . 991 = ( ...1 )49 . 99 = ( ...1 ) . 99 = ( ...9 )
h ) 18176 = 184.44 = ( 184 )44 = ( ...6 )44 = ( ...6 )
i ) 14101 = 142.50+1 = ( 142 )50 . 141 = ( ...6 )50 . 14 = ( ...6 ) . 14 = ( ...4 )
Bài toán 1:
a) Trước hết, ta tìm số dư của phép chia 99 cho 4:
99 - 1 = (9 - 1)(98 + 97 + ... + 9 + 1) chia hết cho 4
=> 99 = 4k + 1 (k thuộc N) => 799 = 74k + 1 = 74k.7
Do 74k có chữ số tận cùng là 1 (theo tính chất 1c) => 799 có chữ số tận cùng là 7.
b) Dễ thấy 1414 = 4k (k thuộc N) => theo tính chất 1d thì 141414 = 144k có chữ số tận cùng là 6.
c) Ta có 567 - 1 chia hết cho 4 => 567 = 4k + 1 (k thuộc N)
=> 4567 = 44k + 1 = 44k.4, theo tính chất 1d, 44k có chữ số tận cùng là 6 nên 4567 có chữ số tận cùng là 4.
Tính chất sau được => từ tính chất 1.
Bài toán 2:
Nhận xét: Mọi lũy thừa trong S đều có số mũ khi chia cho 4 thì dư 1 (các lũy thừa đều có dạng n4(n - 2) + 1, n thuộc {2, 3, ..., 2004}).
Theo tính chất 2, mọi lũy thừa trong S và các cơ số tương ứng đều có chữ số tận cùng giống nhau, bằng chữ số tận cùng của tổng:
(2 + 3 + ... + 9) + 199.(1 + 2 + ... + 9) + 1 + 2 + 3 + 4 = 200(1 + 2 + ... + 9) + 9 = 9009.
Vậy chữ số tận cùng của tổng S là 9.
Bài 1 :
a) Trước hết, ta tìm số dư của phép chia 99 cho 4 :
99 – 1 = (9 – 1)(98 + 97 + … + 9 + 1) chia hết cho 4
=> 99 = 4k + 1 (k thuộc N) => 799 = 74k + 1 = 74k.7
Do 74k có chữ số tận cùng là 1 (theo tính chất 1c) => 799 có chữ số tận cùng là 7.
b) Dễ thấy 1414 = 4k (k thuộc N) => theo tính chất 1d thì 141414 = 144k có chữ số tận cùng là 6.
c) Ta có 567 – 1 chia hết cho 4 => 567 = 4k + 1 (k thuộc N)
=> 4567 = 44k + 1 = 44k.4, theo tính chất 1d, 44k có chữ số tận cùng là 6 nên 4567 có chữ số tận cùng là 4.
a) 799 = ...3
b) 141414 = ...6
c) 4567 = ...4
d) 735 - 43.1 = ...3 - ...4
= ...13 - ...4
= ...9
e) 21930 - 91945 = ...4 - ...9
= ...14 -...9
= ...5
Ta có: \(17^{2007}\) = \(17^{4.501}.17\) = \(\left(17^4\right)^{501}.17\) = \(\left(...1\right)^{501}.17\) = \(\left(...1\right).17=...7\)
Ta có : \(19^{21}=19^{2.10}.19=\left(19^2\right)^{10}.19=\left(...1\right)^{10}.19\)
\(=\left(...1\right).19\)\(=\left(...9\right)\)