Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Số đó là : 583
Kick mik nha, mik kick lại !!!!!!!!!!!!!!!!!!!!!!!!
\(B=\left(3^4\right)^{502}.3.\left(7^4\right)^{502}.7^2.\left(13^4\right)^{502}.13^3\)
\(B=\overline{\left(...........1\right)}\overline{\left(..........1\right)\left(...........1\right)}.3.49.2197=\left(\overline{...............9}\right)\)
Vậy B có tận cùng là 9
Ta có : \(3^4=\overline{...1}\)
<=> \(\left(3^4\right)^{502}=\overline{...1}\)
<=> \(\left(3^4\right)^{502}\cdot3=\overline{...3}\)
<=> \(3^{2009}=\overline{...3}\)(1)
Và \(7^8=\overline{...1}\)
<=> \(\left(7^8\right)^{251}=\overline{...1}\)
<=> \(7^{2008}\cdot7^2=\overline{...9}\)
<=> \(7^{2010}=\overline{...9}\)(2)
Và \(13^4=\overline{...1}\)
<=> \(\left(13^4\right)^{502}=\overline{...1}\)
<=> \(\left(13^4\right)^{502}\cdot13^3=\overline{...7}\)(3)
Từ (1)(2)(3)=> b= \(3^{2009}\cdot7^{2010}\cdot13^{2011}=\overline{...3}\cdot\overline{...7}\cdot\overline{...9}=\overline{...9}\)
Vậy chữ số hàng đơn vị của b là 9.