Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) + De so 4x12y chia het cho 2 va 5
Thi y = 0
=> Ta co : 4x120 cha het cho 2 ; 5 ; 9
+ De so 4x120 \(⋮\) 9
=> ( 4 + x + 1 + 2 + 0 ) \(⋮\) 9
=> ( x + 7 ) \(⋮\)9
=> x = 2
Vay de so 4x12y chia het cho ca 2 ; 5 ;9 thi x=2 va y =0
b) + De so 40ab chia het cho 2 va 5
thi b=0
Ta co 40a0 chia het cho 2 ; 3 ; 9 ; 5
Vi so nao chia het cho 9 cung chia het cho 3
=> De so 40a0 \(⋮\)3 thi 40a0 \(⋮\)9
+ De 40a0 \(⋮\) 9
=> ( 4 + 0 + a + 0 ) \(⋮\) 9
=> ( 4 + a) \(⋮\) 9
=> a= 5
Vay de 40ab chia het cho 2; 3; 9;5 thi a= 5 va b=0
Bài hay vậy!
Từ các giả thiết về số chẵn suy ra \(b,d,f,h\) là các chữ số chẵn còn \(a,c,e,g,i\)là các chữ số lẻ.
Do \(\overline{abcde}\) chia hết cho 5 nên \(e=5\).
Từ các giả thiết về chia hết cho 3, 6, 9 suy ra \(\overline{abc},\overline{def},\overline{ghi}\) đều chia hết cho 3.
Nhận xét: Do \(\overline{cd}\) chia hết cho 4 mà \(c\) lẻ nên (bằng kiểm tra) suy ra \(d=2\) hoặc \(d=6.\)
Trường hợp 1: \(d=2\). Khi đó \(\overline{def}=\overline{25f}\) chia hết cho 3 nên \(f=8\).
\(\overline{fgh}=\overline{8gh}\) chia hết cho 8 nên \(\overline{gh}=16\). Nhưng khi đó \(\overline{ghi}=\overline{16i}\) chia hết cho 3 thì vô lí.
Trường hợp 2: \(d=6\). Khi đó \(\overline{def}=\overline{65f}\) chia hết cho 3 nên \(f=4\).
\(\overline{fgh}=\overline{4gh}\) chia hết cho 8 nên \(\overline{gh}=32\) hoặc \(\overline{gh}=72\).
Nếu \(\overline{gh}=32\) thì do \(\overline{ghi}\) chia hết cho 3 suy ra vô lí.
Do đó \(\overline{gh}=72\) nên \(\overline{ghi}=729\).
Ta đã có \(\overline{abcdefghi}=\overline{abc654729}\). Còn lại các chữ số \(1,3,8\).
Lưu ý \(b\) chẵn.
Nếu \(\overline{abc}=183\) thì \(1836547\) không chia hết cho 7 (vô lí).
Còn \(\overline{abc}=381\) thì \(3816547\) chia hết cho 7.
Đáp số là \(381654729\)
Để:
1111111*33333333 chia hết cho 7 thì:
⇒ 11111111*3333333 + (3 x 5) phải chia hết cho 7
⇒ 11111111+* x 100000000 + 33333333 + 15 chia hết cho 7
⇒ 44444459 + * x 100000000 chia hết cho 7
⇒ * = 2
* = 2