Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do a + 1 và b + 2007 chia hết cho 6. Do đó : a, b lẻ. Thật vậy, nếu a, b chẵn
⇒a+1,b+2007 ⋮/ 2
⇒a+1,b+2007 ⋮/ 6.
Điều nói trên là trái với giả thiết.
Vậy a, b luôn lẻ.
Do đó : 4a+a+b ⋮ 2.
Ta có : a+1,b+2007 ⋮ 6.
⇒a+1+b+2007 ⋮ 6
⇒(a+b+1)+2007 ⋮ 3.
⇒a+b+1 ⋮ 3.
Ta thấy 4a+a+b=(4a−1)+(a+b+1)
Lại có : 4a−1 ⋮ (4−1)=3 (*)
suy ra : 4a+a+b ⋮ 3
mà \(\left(2,3\right)=1\RightarrowĐPCM\)
b+2007 chia hết cho 6 nên b+3 chia hết cho 6
4a+a+b=4a-4+a+1+b+3
mà 4a đồng dư với 4 (mod 6) nên 4a-4 chia hết cho 6
mặt khác a+1 và b+3 chia hết cho 6 nên 4a+a+b chia hết cho 6
Bài hay vậy!
Từ các giả thiết về số chẵn suy ra \(b,d,f,h\) là các chữ số chẵn còn \(a,c,e,g,i\)là các chữ số lẻ.
Do \(\overline{abcde}\) chia hết cho 5 nên \(e=5\).
Từ các giả thiết về chia hết cho 3, 6, 9 suy ra \(\overline{abc},\overline{def},\overline{ghi}\) đều chia hết cho 3.
Nhận xét: Do \(\overline{cd}\) chia hết cho 4 mà \(c\) lẻ nên (bằng kiểm tra) suy ra \(d=2\) hoặc \(d=6.\)
Trường hợp 1: \(d=2\). Khi đó \(\overline{def}=\overline{25f}\) chia hết cho 3 nên \(f=8\).
\(\overline{fgh}=\overline{8gh}\) chia hết cho 8 nên \(\overline{gh}=16\). Nhưng khi đó \(\overline{ghi}=\overline{16i}\) chia hết cho 3 thì vô lí.
Trường hợp 2: \(d=6\). Khi đó \(\overline{def}=\overline{65f}\) chia hết cho 3 nên \(f=4\).
\(\overline{fgh}=\overline{4gh}\) chia hết cho 8 nên \(\overline{gh}=32\) hoặc \(\overline{gh}=72\).
Nếu \(\overline{gh}=32\) thì do \(\overline{ghi}\) chia hết cho 3 suy ra vô lí.
Do đó \(\overline{gh}=72\) nên \(\overline{ghi}=729\).
Ta đã có \(\overline{abcdefghi}=\overline{abc654729}\). Còn lại các chữ số \(1,3,8\).
Lưu ý \(b\) chẵn.
Nếu \(\overline{abc}=183\) thì \(1836547\) không chia hết cho 7 (vô lí).
Còn \(\overline{abc}=381\) thì \(3816547\) chia hết cho 7.
Đáp số là \(381654729\)