Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a chỉ có thể = 0,1,2,3,4,5,6,7,8,9
Thử :
100 : 7 = \(\frac{100}{7}\)( loại vì ko chia hết)
101 : 7 = \(\frac{101}{7}\)( loại )
102 : 7 = 102/7 ( loại )
103 : 7 = 103/7 ( loại )
104 : 7 = 104/7 ( loại )
105 : 7 = 15 ( nhận)
các số sau cũng chia ko hết.
Vậy a = 5 , b = 1 , c = 5
Ta có : abc = ab + bc + ca
=> 100a + 10b + c = 10a + b + 10b + c + 10c + a
=> 100a + 10b + c = ( 10a + a ) + ( 10b + b ) + ( 10c + c )
=> 100a + 10b + c = 11a + 11b + 11c
=> 100a - 11a = ( 11b - 10b ) + ( 11c - c )
=> 89a = b + 10c
Vì 89a > b + 10c
=> Dấu " = " xảy ra khi a = 1
Khi đó 89 = b + 10c
+) Nếu c = 9 và b = một số bất kì => b + 10c = b + 90 ( Vô lí vì 89 < 90 + b với mọi b )
+) Nếu c = 8 và b = một số bất kì => b + 10c = b + 80
Khi đó 89 = b + 80 => b = 9 ( thỏa mãn )
+) Nếu c \(\le\)7 và b = một số bất kì => b + 10c \(\le\)b + 70 ( loại vì nếu b = 9 thì vẫn chưa bằng 89 )
Vậy : a = 1 ; b = 9 ; c = 8
Bài 2 :
a) \(2^a+154=5^b\left(a;b\inℕ\right)\)
-Ta thấy,chữ số tận cùng của \(5^b\) luôn luôn là chữ số \(5\)
\(\Rightarrow2^a+154\) có chữ số tận cùng là \(5\)
\(\Rightarrow2^a\) có chữ số tận cùng là \(1\) (Vô lý, vì lũy thừa của 2 là số chẵn)
\(\Rightarrow\left(a;b\right)\in\varnothing\)
b) \(10^a+168=b^2\left(a;b\inℕ\right)\)
Ta thấy \(10^a\) có chữ số tận cùng là số \(0\)
\(\Rightarrow10^a+168\) có chữ số tận cùng là số \(8\)
mà \(b^2\) là số chính phương (không có chữ số tận cùng là \(8\))
\(\Rightarrow\left(a;b\right)\in\varnothing\)
Bài 3 :
a) \(M=19^k+5^k+1995^k+1996^k\left(với.k.chẵn\right)\)
Ta thấy :
\(5^k;1995^k\) có chữ số tận cùng là \(5\) (vì 2 số này có tận cùng là \(5\))
\(\Rightarrow5^k+1995^k\) có chữ số tận cùng là \(0\)
mà \(1996^k\) có chữ số tận cùng là \(6\) (ví số này có tận cùng là số \(6\))
\(\Rightarrow5^k+1995^k+1996^k\) có chữ số tận cùng là chữ số \(6\)
mà \(19^k\left(k.chẵn\right)\) có chữ số tận cùng là số \(1\)
\(\Rightarrow M=19^k+5^k+1995^k+1996^k\) có chữ số tận cùng là số \(7\)
\(\Rightarrow M\) không thể là số chính phương.
b) \(N=2004^{2004k}+2003\)
Ta thấy :
\(2004k=4.501k⋮4\)
mà \(2004\) có chữ số tận cùng là \(4\)
\(\Rightarrow2004^{2004k}\) có chữ số tận cùng là \(6\)
\(\Rightarrow N=2004^{2004k}+2003\) có chữ số tận cùng là \(9\)
\(\Rightarrow N\) có thể là số chính phương (nên câu này bạn xem lại đề bài)
GTNN của phân số \(\dfrac{10a+b}{a+b}\) là 10 tại a=1, b=0.
Đặt \(A=\dfrac{10a+b}{a+b}\)
Ta có:
\(A=\dfrac{10a+b}{a+b}=\dfrac{a+b+9a}{a+b}=1+\dfrac{9a}{a+b}=1+\dfrac{9}{1+\dfrac{b}{a}}\)
Để \(A\) nhỏ nhất thì \(1+\dfrac{9}{1+\dfrac{b}{a}}\) nhỏ nhất
\(\Leftrightarrow1+\dfrac{b}{a}\) phải lớn nhất \(\Leftrightarrow\dfrac{b}{a}\) lớn nhất
Mà \(a;b\) là các chữ số \(\Leftrightarrow\left\{{}\begin{matrix}b=9\\a=1\end{matrix}\right.\)
Vậy \(Min_A=\dfrac{10.1+9}{1+9}=\dfrac{19}{10}\) tại \(\left\{{}\begin{matrix}b=9\\a=1\end{matrix}\right.\)
Ko hiểu?????