Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lỗi sai: Khi chuyển vế hạng tử -x từ vế phải sang vế trái và hạng tử -6 từ vế trái sang vế phải không đổi dấu của hạng tử đó.
Sửa lại:
3x – 6 + x = 9 – x
⇔ 3x + x + x = 9 + 6
⇔ 5x = 15
⇔ x = 3.
Vậy phương trình có nghiệm duy nhất x = 3.
Bài đầy đủ đây đúng ko
a) 3x - 6 + x = 9 - x
<=> 3x + x - x = 9 - 6
<=> 3x = 3
<=> x =1
Sai ở chỗ phương trình thứ chuyển vế hạng tử -6 từ vế trái sang vế phải, hạng tử -x từ vế phải sang vế trái mà không đổi dấu
a) Giải lại:
<=> 3x + x + x = 9 + 6
<=> 5x = 15
<=> x = 3
b) Sai ở phương trình thứ 2, chuyển số hạng tử -3 từ vế trái sang vế phải mà ko đổi dấu
Giải lại:
<=> 2t + 5t - 4t = 12 + 3
<=> 3t = 15
<=> t = 5
Hướng dẫn giải:
a) 3x -11 = 0 <=> 3x = 11 <=> x = 113113
<=> x ≈ 3, 67
Nghiệm gần đúng là x = 3,67.
b) 12 + 7x = 0 <=> 7x = -12 <=> x = −127−127
<=> x ≈ -1,71
Nghiệm gần đúng là x = -1,71.
c) 10 - 4x = 2x - 3 <=> -4x - 2x = -3 - 10
<=> -6x = -13 <=> x = 136136 <=> x ≈ 2,17
Nghiệm gần đúng là x = 2, 17.
Hướng dẫn giải:
a) Sai ở phương trình thứ hai chuyển vế hạng tử -6 từ vế trái sang vế phải, hạng tử -x từ vế phải sang vế trái mà không đổi dấu.
Giải lại: 3x - 6 + x = 9 - x
<=> 3x + x + x = 9 + 6
<=> 5x = 15
<=> x = 3
Vậy phương trình có nghiệm duy nhất x = 3
b) Sai ở phương trình thứ hai, chuyển vế hạng tử -3 từ vế trái sang vế phải mà không đổi dấu.
Giải lại: 2t - 3 + 5t = 4t + 12
<=> 2t + 5t - 4t = 12 + 3
<=> 3t = 15
<=> t = 5
Vậy phương trình có nghiệm duy nhất t = 5
1:
a: =>3x=6
=>x=2
b: =>4x=16
=>x=4
c: =>4x-6=9-x
=>5x=15
=>x=3
d: =>7x-12=x+6
=>6x=18
=>x=3
2:
a: =>2x<=-8
=>x<=-4
b: =>x+5<0
=>x<-5
c: =>2x>8
=>x>4
Bài 3: (SBT/24):
a. \(\dfrac{5x+3}{x-2}\)=\(\dfrac{5x^2+13x+6}{x^2-4}\)
(5x+3) . (x2-4) = 5x3-20x+3x3-12
(x-2) . (5x2+13x+6) = 5x3+13x2+6x-10x2-26x-12 = 5x3-20x+3x2-12
=> (5x+3) (x2-4) = (x-2) (5x2+13x+6)
Vậy \(\dfrac{5x+3}{x-2}\)=\(\dfrac{5x^2+13x+6}{x^2-4}\)(đẳng thức đúng)
b. \(\dfrac{x+1}{x+3}\)=\(\dfrac{x^2+3}{x^2+6x+9}\)
(x+1) . (x2+6x+9) = x3+6x2+9x+x2+6x+9 = x3+7x2+15x+9
(x+3) . (x2+3) = x3+3x+3x2+9
=> (x+1) (x2+6x+9) ≠ (x+3) (x2+3)
Vậy \(\dfrac{x+1}{x+3}\)≠\(\dfrac{x^2+3}{x^2+6x+9}\)(đẳng thức sai)
Chữa lại: \(\dfrac{x+1}{x+3}\)=\(\dfrac{x^2+3}{x^{2_{ }}+6x+9}\)
c. \(\dfrac{x^2-2}{x^2-1}\)=\(\dfrac{x+2}{x+1}\)
(x2-2) . (x+1) = x3+x2-2x-2
(x2-1) . (x+2) = x3+2x2-x-2
=> (x2-2) (x+1) ≠ (x2-1) (x+2)
Vậy \(\dfrac{x^2-2}{x^2-1}\)≠\(\dfrac{x+2}{x+1}\)(đẳng thức sai)
Chữa lại: \(\dfrac{x^2+x-2}{x^2-1}\)=\(\dfrac{x+2}{x+1}\)
d. \(\dfrac{2x^2-5x+3}{x^2+3x-4}\)=\(\dfrac{2x^2-x-3}{x^2+5x+4}\)
(2x2-5x+3) . (x2+5x+4) = 2x4+10x3+8x2-5x3-25x2-20x+3x2+15x+12
= 2x4+5x3-14x2-5x+12
(x2+3x-4) . (2x2-x-3) = 2x4-x3-3x2+6x3-3x2-9x-8x2+4x+12
= 2x4+5x3-14x2-5x+12
=> (2x2-5x+3) (x2+5x+4) = (x2+3x-4) (2x2-x-3)
Vậy \(\dfrac{2x^2-5x+3}{x^2+3x-4}\)=\(\dfrac{2x^2-x-3}{x^2+5x+4}\)
1) \(3x-2x+6=6\Leftrightarrow x=0\)
2) \(4\left(2x-1\right)-12x-12=3\left(x+2\right)\)
\(\Leftrightarrow8x-4-12x-12-3x-6=0\)
\(\Leftrightarrow7x=-22\Leftrightarrow x=\dfrac{-22}{7}\)
3, \(\left(x-1\right)2=9\left(x+1\right)2\)
\(\Leftrightarrow2x-2\) \(=18x+18\)
\(\Leftrightarrow2x-18x=18+2\)
\(\Leftrightarrow-16x\) \(=20\)
\(\Leftrightarrow x\) \(=\dfrac{-5}{4}\)
Vậy pt đã cho có tập nghiệm là S= \(\left\{\dfrac{-5}{4}\right\}\)
4, \(\dfrac{x-4}{x-1}+\dfrac{x+4}{x+1}=2\) ( ĐKXĐ : \(x\ne\pm1\) )
\(\Leftrightarrow\dfrac{\left(x-4\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}+\dfrac{\left(x+4\right)\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}=\dfrac{2\left(x+1\right)\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}\)
\(\Rightarrow x^2-3x-4+x^2+3x-4=2x^2-2\)
\(\Leftrightarrow2x^2-8-2x^2+2=0\)
\(\Leftrightarrow0\) \(=6\) ( Vô lí )
Vậy pt đã cho vô nghiệm
2 x 2 - 5 x + 3 x 2 + 5 x + 4 = 2 x 4 + 10 x 3 + 8 x 2 - 5 x 3 - 25 x 2 - 20 x + 3 x 2 + 15 x + 12 = 2 x 4 + 5 x 3 - 14 x 2 - 5 x + 12
x 2 + 3 x - 4 2 x 2 - x - 3 = 2 x 4 - x 3 - 3 x 2 + 6 x 3 - 3 x 2 - 9 x - 8 x 2 + 4 x + 12 = 2 x 4 + 5 x 3 - 4 x 2 - 5 x + 12
Ta có: 2 x 2 - 5 x + 3 x 2 + 5 x + 4 = x 2 + 3 x - 4 2 x 2 - x - 3
Vậy đẳng thức đúng.
Sai ở phương trình thứ hai chuyển vế hạng tử -6 từ vế trái sang vế phải, hạng tử -x từ vế phải sang vế trái mà không đổi dấu.
Giải lại: 3x - 6 + x = 9 - x
<=> 3x + x + x = 9 + 6
<=> 5x = 15
<=> x = 3
Vậy phương trình có nghiệm duy nhất x = 3