Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: ( x+y)^2 + ( x-2)^2 = 0
=> (x+y)^2 = 0 và (x-2)^2=0
=> x+y = 0 và x-2 = 0
Giải ra ta được: x = 2, y = -2
Vì \(\hept{\begin{cases}\left(x-2\right)^2\ge0\forall x\\\left(y+1\right)^2\ge0\forall y\end{cases}}\)
\(\Rightarrow\left(x-2\right)^2+\left(y+1\right)^2\ge0\forall x;y\)
Mà đề lại cho \(\left(x-2\right)^2+\left(y+1\right)^2=0\Rightarrow\hept{\begin{cases}\left(x-2\right)^2=0\\\left(y+1\right)^2=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x-2=0\\y+1=0\end{cases}}\Rightarrow\hept{\begin{cases}x=2\\y=-1\end{cases}}\)
Vậy \(x=2;y=-1\)
Coi phương trình trên là pt bậc 2 ẩn x tham số y
Ta có : \(\Delta=\left(y-1\right)^2-4\left(y+3\right)\)
\(=y^2-2y+1-4y-12\)
\(=y^2-6y-11\)
Pt có nghiệm khi \(\Delta=y^2-6y-11\ge0\)
\(\Leftrightarrow\orbr{\begin{cases}y\le3-2\sqrt{5}\\y\ge3+2\sqrt{5}\end{cases}}\)
Để pt ban đầu có nghiệm nguyên thì \(\Delta\)phải là số chính phương
Đặt \(\Delta=k^2\left(k\inℕ\right)\)
\(\Leftrightarrow y^2-6y-11=k^2\)
\(\Leftrightarrow\left(y-3\right)^2-20=k^2\)
\(\Leftrightarrow\left(y-3\right)^2-k^2=20\)
\(\Leftrightarrow\left(y-3-k\right)\left(y-3+k\right)=20\)
Vì y là số nguyên , k là số tự nhiên nên y - 3 - k < y - 3 + k và 2 số này đều nguyên
Lập bảng ước của 20 ra tìm đc y -> thế vào pt ban đầu -> tìm đc x (Nếu x;y mà ko nguyên thì loại)
Ta có : |x - 1| + |y + 1| = 0
Mà : |x - 1| \(\ge0\forall x\in R\)
|y + 1| \(\ge0\forall x\in R\)
Nên : |x - 1| = |y + 1| = 0
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\y+1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\y=-1\end{cases}}\)
Ta có :
|x - 3| \(\ge\)0
(y - 2)2 \(\ge\)0
=> |x - 3| + (y - 2)2 \(\ge\) 0
Mà |x - 3| + (y - 2)2 = 0
=> |x - 3| = 0 và (y - 2)2 = 0
=> x = 3 và y = 2
Ta có |x-3|\(\ge\)0
(y-2)2\(\ge0\)
=> |x-3|+(y-2)2\(\ge\)0
Để |x-3|+(y-2)2=0 thì
|x-3|=0 và (y-2)2=0
=>x-3=0 và y-2=0
=>x=3 và y=2
Vậy x=3, y=2