\(\left(\frac{3x-5}{9}\right)^2+\left(\frac{3y+1}{3}\right)^2=0...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 7 2016

ta đặt A=:\(\left(\frac{3x-5}{9}\right)^2+\left(\frac{3y+1}{3}\right)^2=0\)

 ta thấy : \(\left(\frac{3x-5}{9}\right)^2\ge0\)với mọi x thuộc R

\(\left(\frac{3y+1}{3}\right)^2\ge0\) với mọi x thuộc R

=> A=0 khi \(\begin{cases}\left(\frac{3x-5}{9}\right)^2=0\\\left(\frac{3y+1}{3}\right)^2=0\end{cases}\)<=> x=5/3 và y=-1/3

27 tháng 7 2016

\(\left(\frac{3x-5}{9}\right)^2+\left(\frac{3y+1}{3}\right)^2=0\)

\(\left(\frac{9x^2-25}{81}\right)+\left(\frac{9y+1}{9}\right)=0\)

\(\Rightarrow\begin{cases}\left(\frac{9x^2-25}{81}\right)=0\\\left(\frac{9y+1}{9}\right)=0\end{cases}\Leftrightarrow\begin{cases}\left(9x^2-25=0\right)\\\left(9y+1\right)=0\end{cases}}\)\(\Leftrightarrow\begin{cases}9x^2=25\\9y=-1\end{cases}\Leftrightarrow\begin{cases}x^2=\frac{25}{9}\\y=\frac{-1}{9}\end{cases}\Leftrightarrow}\begin{cases}x=\pm\frac{5}{3}\\y=\frac{-1}{9}\end{cases}}\)

15 tháng 6 2018

a) \(\left|3x-\frac{1}{2}\right|+\left|\frac{1}{2}y+\frac{3}{5}\right|=0\)

\(\Rightarrow\left|3x-\frac{1}{2}\right|=0\)                                \(\Rightarrow\left|\frac{1}{2}y+\frac{3}{5}\right|=0\)

\(\Rightarrow3x-\frac{1}{2}=0\)                                      \(\Rightarrow\frac{1}{2}y+\frac{3}{5}=0\)

\(3x=\frac{1}{2}\)                                                          \(\frac{1}{2}y=\frac{-3}{5}\)

\(x=\frac{1}{2}:3\)                                                             \(y=\left(\frac{-3}{5}\right):\frac{1}{2}\)

\(x=\frac{1}{6}\)                                                                  \(y=\frac{-6}{5}\)

KL: x = 1/6; y = -6/5

b) \(\left|\frac{3}{2}x+\frac{1}{9}\right|+\left|\frac{1}{5}y-\frac{1}{2}\right|\le0\)

mà \(\left|\frac{3}{2}x+\frac{1}{9}\right|>0;\left|\frac{1}{5}y-\frac{1}{2}\right|>0\)

\(\Rightarrow\left|\frac{3}{2}x+\frac{1}{9}\right|+\left|\frac{1}{5}y-\frac{1}{2}\right|>0\)

=> trường hợp |3/2x +1/9| + |1/5y -1/2| < 0 không thế xảy ra

\(\Rightarrow\left|\frac{3}{2}x+\frac{1}{9}\right|+\left|\frac{1}{5}y-\frac{1}{2}\right|=0\)

rùi bn lm tương tự như phần a nhé!

23 tháng 5 2019

\(\left(3x-1\right)\left(\frac{-1}{2}x+5\right)=0\)

\(\orbr{\begin{cases}3x-1=0\\\frac{-1}{2}x+5=0\end{cases}}\)

\(\orbr{\begin{cases}x=\frac{1}{3}\\x=10\end{cases}}\)

24 tháng 5 2019

\(\frac{1}{4}+\frac{1}{3}:(2x-1)=-5\)

\(\Rightarrow\frac{1}{3}:(2x-1)=-5-\frac{1}{4}\)

\(\Rightarrow\frac{1}{3}:(2x-1)=\frac{-21}{4}\)

\(\Rightarrow2x-1=\frac{1}{3}:-\frac{21}{4}\)

\(\Rightarrow2x-1=\frac{1}{3}\cdot-\frac{4}{21}\)

\(\Rightarrow2x-1=\frac{-4}{63}\)

\(\Rightarrow2x=-\frac{4}{63}+1\)

\(\Rightarrow2x=\frac{59}{63}\Leftrightarrow x=\frac{59}{126}\)

\(\left(2x+\frac{3}{5}\right)^2-\frac{9}{25}=0\)

\(\Leftrightarrow\left(2x+\frac{3}{5}\right)^2=\frac{9}{25}\)

\(\Leftrightarrow\left(2x+\frac{3}{5}\right)^2=\left(\frac{3}{5}\right)^2\)

\(\Leftrightarrow\orbr{\begin{cases}2x+\frac{3}{5}=\frac{3}{5}\\2x+\frac{3}{5}=-\frac{3}{5}\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}2x=0\\2x=-\frac{6}{5}\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=-\frac{3}{5}\end{cases}}\)

_Tần vũ_

\(3\left(3x-\frac{1}{2}\right)^3+\frac{1}{9}=0\)

\(\Leftrightarrow3\left(3x-\frac{1}{2}\right)^3=-\frac{1}{9}\)

\(\Leftrightarrow\left(3x-\frac{1}{2}\right)^3=-\frac{1}{27}\)

\(\Leftrightarrow\left(3x-\frac{1}{2}\right)^3=\left(-\frac{1}{3}\right)^3\)

\(\Leftrightarrow3x-\frac{1}{2}=\frac{-1}{3}\)

\(\Leftrightarrow3x=\frac{1}{6}\)

\(\Leftrightarrow x=\frac{1}{18}\)

_Tần Vũ_

30 tháng 3 2017

cho vài k đi bà con ơi

15 tháng 6 2018

Giải:

Vì:

\(\left\{{}\begin{matrix}\left|3x-\dfrac{1}{2}\right|\ge0\\\left|\dfrac{1}{2}y+\dfrac{3}{5}\right|\ge0\end{matrix}\right.\)

Nên dấu "=" xảy ra khi và chỉ khi:

\(\left\{{}\begin{matrix}\left|3x-\dfrac{1}{2}\right|=0\\\left|\dfrac{1}{2}y+\dfrac{3}{5}\right|=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3x-\dfrac{1}{2}=0\\\dfrac{1}{2}y+\dfrac{3}{5}=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3x=\dfrac{1}{2}\\\dfrac{1}{2}y=-\dfrac{3}{5}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{6}\\y=-\dfrac{6}{5}\end{matrix}\right.\)

Vậy ...

b) \(\left|\dfrac{3}{2}x+\dfrac{1}{9}\right|+\left|\dfrac{1}{5}y-\dfrac{1}{2}\right|\le0\)

Vì:

\(\left\{{}\begin{matrix}\left|\dfrac{3}{2}x+\dfrac{1}{9}\right|\ge0\\\left|\dfrac{1}{5}y-\dfrac{1}{2}\right|\ge0\end{matrix}\right.\)

Dấu "=" xảy ra, khi và chỉ khi:

\(\left\{{}\begin{matrix}\left|\dfrac{3}{2}x+\dfrac{1}{9}\right|=0\\\left|\dfrac{1}{5}y-\dfrac{1}{2}\right|=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3}{2}x+\dfrac{1}{9}=0\\\dfrac{1}{5}y-\dfrac{1}{2}=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3}{2}x=-\dfrac{1}{9}\\\dfrac{1}{5}y=\dfrac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{2}{27}\\y=\dfrac{5}{2}\end{matrix}\right.\)

Vậy ...

17 tháng 7 2019

b  \(\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+...+\frac{1}{x\cdot\left(x+1\right)}=\frac{19}{100}\)

=>\(\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{19}{100}\)

=>\(\frac{1}{5}-\frac{1}{x+1}\)\(=\frac{19}{100}\)

=>\(\frac{1}{x+1}=\frac{1}{5}-\frac{19}{100}\)

=>\(\frac{1}{x+1}=\frac{1}{100}\)

=> x+1 =100

=>x=99

17 tháng 7 2019

b) \(\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{x\left(x+1\right)}=\frac{19}{100}\)

\(\Rightarrow\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{19}{100}\)

\(\Rightarrow\frac{1}{5}-\frac{1}{x+1}=\frac{19}{100}\)

\(\Rightarrow\frac{1}{x+1}=\frac{1}{5}-\frac{19}{100}\)

\(\Rightarrow\frac{1}{x+1}=\frac{1}{100}\)

\(\Rightarrow x+1=100\)

\(\Rightarrow x=99\)

c) \(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{x\left(x+2\right)}=\frac{49}{99}\)

\(\Rightarrow1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+2}=\frac{49}{99}\)

\(\Rightarrow1-\frac{1}{x+2}=\frac{49}{99}\)

\(\Rightarrow\frac{1}{x+2}=1-\frac{49}{99}\)

\(\Rightarrow\frac{1}{x+2}=\frac{50}{99}\)

\(\Rightarrow50.\left(x+2\right)=99\)

\(\Rightarrow x+2=\frac{99}{50}\)

\(\Rightarrow x=-\frac{1}{99}\)

d) Ta có : 6 = 1.6 = 2.3 = (-2) . (-3)

Lâp bảng xét 6 trường hợp: 

\(2x+1\)\(1\)\(6\)\(2\)\(3\)\(-2\)\(-3\)
\(y-2\)\(6\)\(1\)\(3\)\(2\)\(-3\)\(-2\)
\(x\)\(0\)\(\frac{5}{2}\)\(\frac{1}{2}\)\(1\)\(-\frac{3}{2}\)\(-2\)
\(y\)\(8\)\(3\)\(5\)\(4\)\(-1\)\(0\)

Vậy các cặp (x,y) \(\inℤ\)thỏa mãn là : (0;4) ; (1; 4) ; (-2 ; 0)

e) \(x^2-3xy+3y-x=1\)

\(\Rightarrow x\left(x-3y\right)+3y-x=1\)

\(\Rightarrow x\left(x-3y\right)-\left(x-3y\right)=1\)

\(\Rightarrow\left(x-3y\right)\left(x-1\right)=1\)

Lại có : 1 = 1.1 = (-1) . (-1)

Lập bảng xét các trường hợp : 

\(x-1\)\(1\)\(-1\)
\(x-3y\)\(1\)\(-1\)
\(x\)\(2\)\(0\)
\(y\)\(\frac{1}{3}\)\(\frac{1}{3}\)

Vậy các cặp(x,y) thỏa mãn là : \(\left(2;\frac{1}{3}\right);\left(0;\frac{1}{3}\right)\)

6 tháng 6 2016

\(\left(x+\frac{1}{5}\right)^2+\frac{17}{25}=\frac{26}{25}\\ \left(x+\frac{1}{5}\right)^2=\frac{26}{25}-\frac{17}{25}\\ \left(x+\frac{1}{5}\right)^2=\frac{9}{25}\\ \left|\left(x+\frac{1}{5}\right)\right|=\frac{3}{5}\)

 TH1:   \(x=\frac{3}{5}-\frac{1}{5}\\ x=\frac{2}{5}\)

TH2: \(\left|\left(x+\frac{1}{5}\right)\right|=-\frac{3}{5}\\ x=-\frac{3}{5}-\frac{1}{5}\\ x=-\frac{4}{5}\)

6 tháng 6 2016

\(a,\left(x+\frac{1}{5}\right)^2+\frac{17}{25}=\frac{26}{25}\)

\(\Rightarrow\left(x+\frac{1}{5}\right)^2=\frac{9}{25}\)

\(\Rightarrow\left(x+\frac{1}{5}\right)^2=\left(\frac{3}{5}\right)^2\)

\(\Rightarrow x+\frac{1}{5}=\frac{3}{5}\)

\(\Rightarrow x=\frac{2}{5}\)

\(b,-1\frac{5}{27}-\left(3x-\frac{7}{9}\right)^3=-\frac{24}{27}\)

\(\Rightarrow-\frac{32}{27}-\left(3x-\frac{7}{9}\right)^3=-\frac{24}{27}\)

\(\Rightarrow\left(3x-\frac{7}{9}\right)^3=-\frac{32}{27}+\frac{24}{27}\)

\(\Rightarrow\left(3x-\frac{7}{9}\right)^3=-\frac{8}{27}\)

\(\Rightarrow\left(3x-\frac{7}{9}\right)^3=\left(-\frac{2}{3}\right)^3\)

\(\Rightarrow3x-\frac{7}{9}=-\frac{2}{3}\)

\(\Rightarrow3x=-\frac{2}{3}+\frac{7}{9}\)

\(\Rightarrow3x=\frac{1}{9}\)

\(\Rightarrow x=\frac{1}{27}\)

\(c,\left(x+\frac{1}{2}\right)\left(\frac{2}{3}-2x\right)=0\)

\(\Rightarrow\) \(\left[\begin{array}{nghiempt}x+\frac{1}{2}=0\\\frac{2}{3}-2x=0\end{array}\right.\)  \(\Rightarrow\)  \(\left[\begin{array}{nghiempt}x=-\frac{1}{2}\\2x=\frac{2}{3}\end{array}\right.\)  \(\Rightarrow\)  \(\left[\begin{array}{nghiempt}x=-\frac{1}{2}\\x=\frac{1}{3}\end{array}\right.\)