Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(2x-1\right)\left(y+3\right)=12\)
\(\Rightarrow2x-1=12\)
\(2x=12+1\)
\(2x=13\)
\(x=\dfrac{13}{2}\)
\(\Rightarrow y+3=12\)
\(y=12-3\)
\(y=9\)
Vậy \(x=\dfrac{13}{2}\) và \(y=9\)
\(\left(2x-1\right)\left(y+3\right)=12\)
Ư(12) = {-1,-2,-3,-4,-6,-12,1,2,3,4,6,12}
=> Ta có bảng:
2x - 1 | -1 | -2 | -3 | -4 | -6 | -12 | 1 | 2 | 3 | 4 | 6 | 12 |
y + 3 | -12 | -6 | -4 | -3 | -2 | -1 | 12 | 6 | 4 | 3 | 2 | 1 |
x | 0 | \(-\dfrac{1}{2}\) | -1 | \(-\dfrac{3}{2}\) | \(-\dfrac{5}{2}\) | \(-\dfrac{11}{2}\) | 1 | \(\dfrac{3}{2}\) | 2 | \(\dfrac{5}{2}\) | \(\dfrac{7}{2}\) | \(\dfrac{13}{2}\) |
y | -15 | -9 | -7 | -6 | -5 | -4 | 9 | 3 | 1 | 0 | -1 | -2 |
Vậy từ bảng giá trị ta có các cặp số tự nhiên x,y thỏa mãn là: (1,9); (2,1)
\(\left(2x-1\right)\left(y+3\right)=12\)
\(Ư\left(12\right)=\left\{1;2;3;4;6;12\right\}\)
Vì x,y là cặp số tự nhiên nên giá trị của 2x-1 và y+3 sẽ nằm trong tập ước của 12.
Mà 2x-1 là số nguyên nên 2x-1 là một số lẻ, vậy giá trị có thể xảy ra của x được thu hẹp là: \(1;3\)
2x-1 | 1 | 3 |
y+3 | 12 | 4 |
x | 1 | 2 |
y | 9 | 1 |
a,(2x+1)(y-3)=12
⇒⇒2x+1 và y-3 ∈∈Ư(12)={±1;±2;±3;±4;±6;±12}{±1;±2;±3;±4;±6;±12}
2x+1 | 1 | -1 | 2 | -2 | 3 | -3 |
y-3 | 12 | -12 | 6 | -6 | 4 | -4 |
x | 0 | -1 | 1212 | −32−32 | 1 | -2 |
y | 15 | -9 | 9 | 3 | 7 | -1 |
=>x=0,y=15
c) Ta có: \(36^{25}=\left(6^2\right)^{25}=6^{50}\)
\(25^{36}=\left(5^2\right)^{36}=5^{72}\)
Ta có: \(6^{50}=\left(6^5\right)^{10}=7776^{10}\)
mà \(5^{70}=\left(5^7\right)^{10}=78125^{10}\)
nên \(6^{50}< 5^{70}\)
mà \(5^{70}< 5^{72}\)
nên \(6^{50}< 5^{72}\)
hay \(36^{25}< 25^{36}\)
a/
Với $x,y$ là số tự nhiên $2x+1, y-3$ là số nguyên. Mà $(2x+1)(y-3)=12$ nên $2x+1$ là ước của 12.
$2x+1>0, 2x+1$ lẻ nên $2x+1\in \left\{1;3\right\}$
Nếu $2x+1=1\Rightarrow y-3=12$
$\Rightarrow x=0; y=15$
Nếu $2x+1=3\Rightarrow y-3=4$
$\Rightarrow x=1; y=7$
Vậy...........
b/
$2^x+2^{x+1}+2^{x+2}+...+2^{x+2015}=2^{2019}-8$
$2^x(1+2+2^2+2^3+...+2^{2015})=2^{2019}-8(1)$
$2^x(2+2^2+2^3+2^4+...+2^{2016})=2^{2020}-16(2)$ (nhân 2 vế với 2)
Lấy (2) trừ (1) theo vế thì:
$2^x(2^{2016}-1)=2^{2020}-2^{2019}-8$
$2^x(2^{2016}-1)=2^{2019}(2-1)-8=2^{2019}-8$
$2^x(2^{2016}-1)=2^3(2^{2016}-1)$
$\Rightarrow 2^x=2^3$
$\Rightarrow x=3$