Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1: <Cho là câu a đi>:
a. \(\frac{1}{2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x\left(x+1\right)}=\frac{49}{50}\)
\(\rightarrow\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x\left(x+1\right)}=\frac{49}{50}\)
\(\rightarrow1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{49}{50}\)
\(\rightarrow1-\frac{1}{x+1}=\frac{49}{50}\)
\(\rightarrow\frac{1}{x+1}=1-\frac{49}{50}=\frac{1}{50}\)
\(\rightarrow x+1=50\rightarrow x=49\)
Vậy x = 49.
Ta thấy \(\left(x+y-z\right)^2\ge0\); \(\left(x-y+2\right)^2\ge0\);\(\left(x+4\right)^2\ge0\)với mọi x,y,z
Suy ra \(\left(x+y-z\right)^2+\left(x-y+2\right)^2+\left(x+4\right)^2\ge0\)với mọi x,y,z
Mặt khác \(\left(x+y-z\right)^2+\left(x-y+2\right)^2+\left(x+4\right)^2=0\)
Nên \(\hept{\begin{cases}x+y-z=0\\x-y+2=0\\x+4=0\end{cases}\Rightarrow\hept{\begin{cases}x+y=z\\x+2=y\\x=-4\end{cases}\Rightarrow}\hept{\begin{cases}x+y=z\\y=-2\\x=-4\end{cases}\Rightarrow}\hept{\begin{cases}z=-6\\y=-2\\x=-4\end{cases}}}\)
Vậy.....
a)(x-1)(y+2)=7
=>x-1=1;y+2=7 hoặc x-1=7 ; y+2=1 hoặc x-1=-1;y+2=-7
=>x=2;y=5 hoặc x=8;y=-1hoặc x=0 hoặc y=-9
b)x(y-3)=-12
=>x=-3;y-3=4 hoặc x=3 ; y-3=-4 hoặc x=1 ;y-3=-12 hoặc x=-1 ;y-3=12
=>x=-3;y=7 hoặc x=3 ;y=-1 hoặc x=1 ;y=-9 hoặc x=-1;y=15
Bài 2
\(a,\)\(\left(x^2+7\right)\left(x^2-49\right)< 0\)
Vì \(x^2+7>0\)\(\Rightarrow x^2-49< 0\)
\(\Rightarrow\left(x-7\right)\left(x+7\right)< 0\)
\(...\)
Bài 2:
a) \(\left(x^2+7\right).\left(x^2-49\right)< 0\)
\(\Leftrightarrow\hept{\begin{cases}x^2+7< 0\\x^2-49>0\end{cases}}\)hoặc \(\hept{\begin{cases}x^2+7>0\\x^2-49< 0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x^2< -7\\x^2>49\end{cases}\left(loai\right)}\)hoặc \(\hept{\begin{cases}x^2>-7\\x^2< 49\end{cases}}\)
\(\Leftrightarrow-7< x^2< 49\)
Mà \(x^2\ge0\)và \(x^2\)là 1 SCP
\(\Rightarrow x^2\in\left\{1;4;9;16;25;36\right\}\)
\(\Rightarrow x\in\left\{1;2;3;4;5;6\right\}\)
Vậy \(x\in\left\{1;2;3;4;5;6\right\}\)
2/ Ta có : 4x - 3 \(⋮\) x - 2
<=> 4x - 8 + 5 \(⋮\) x - 2
<=> 4(x - 2) + 5 \(⋮\) x - 2
<=> 5 \(⋮\)x - 2
=> x - 2 thuộc Ư(5) = {-5;-1;1;5}
Ta có bảng :
x - 2 | -5 | -1 | 1 | 5 |
x | -3 | 1 | 3 | 7 |