Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
x+y+xy=3
<=> (x+xy) + (y+1) = 4
<=> x(y+1) + (y+1) = 4
<=> (x+1)(y+1) = 4
Vì x,y nguyên nên (x+1) và (y+1) nguyên :
Ta lại có 4=(-1).(-4)=(-2).(-2)=1.4=2.2
Khi đó ta có:
{x+1= -1 <=> {x= -2
{y+1= -4........{y= -5
hoặc
{x+1= -4 <=> {x= -5
{y+1= -1........{y= -2
hoặc
{x+1= -2 <=> {x= -3
{y+1= -2........{y= -3
hoặc
{x+1= 4 <=> {x= 3
{y+1= 1........{y= 0
hoặc
{x+1= 1 <=> {x= 0
{y+1= 4........{y= 3
hoặc
{x+1= 2 <=> {x= 1
{y+1= 2........{y= 1
Vậy (x;y) bằng (-2;-5) ; (-5;-2) ; (-3;-3) ; (3;0) ; (0;3) ; (1;1)
Ta có:
x+y+xy=3
<=> (x+xy) + (y+1) = 4
<=> x(y+1) + (y+1) = 4
<=> (x+1)(y+1) = 4
Vì x,y nguyên nên (x+1) và (y+1) nguyên
Lại có 4=(-1).(-4)=(-2).(-2)=1.4=2.2
Khi đó ta có:
{x+1= -1 <=> {x= -2
{y+1= -4........{y= -5
hoặc
{x+1= -4 <=> {x= -5
{y+1= -1........{y= -2
hoặc
{x+1= -2 <=> {x= -3
{y+1= -2........{y= -3
hoặc
{x+1= 4 <=> {x= 3
{y+1= 1........{y= 0
hoặc
{x+1= 1 <=> {x= 0
{y+1= 4........{y= 3
hoặc
{x+1= 2 <=> {x= 1
{y+1= 2........{y= 1
Vậy (x;y) bằng (-2;-5) ; (-5;-2) ; (-3;-3) ; (3;0) ; (0;3) ; (1;1)
Đặt: \(3x+2=a\)
\(y-4=b\)
Ta thấy: Để x nguyên thì \(a-2\) phải chia hết cho 3.
Những số nhỏ hơn 10 chia hết cho 3 là: \(3;6;9\)
Vậy \(a\in\left\{5;-1;-4;-7;8;11\right\}\) mà \(11>10\Rightarrow a\in\left\{5;8;-1;-4;-7\right\}\)
Xét \(a=5\Rightarrow3x=3\Rightarrow x=1\)
\(\Rightarrow b=5\Rightarrow y=9\)
\(b=-5\Rightarrow y=-1\)
Xét \(a=8\Rightarrow3x=6\Rightarrow x=2\)
\(\Rightarrow b=2\Rightarrow y=6\)
\(b=-2\Rightarrow y=2\)
Xét \(a=-1\Rightarrow3x=-3\Rightarrow x=-1\)
\(\Rightarrow b=9\Rightarrow y=13\)
\(b=-9\Rightarrow y=-5\)
Xét \(a=-4\Rightarrow3x=-6\Rightarrow x=-2\)
\(\Rightarrow b=8\Rightarrow y=12\)
\(b=-8\Rightarrow y=-4\)
Xét \(a=-7\Rightarrow3x=-9\Rightarrow x=-3\)
\(\Rightarrow b=3\Rightarrow y=7\)
\(b=-3\Rightarrow y=1\)
Kết luận: ......
mình làm thế này các bạn xem có đúng ko. nếu đúng thì k nhé
=> x2 + 2xy + y2 = x2y2 + xy
<=> (x+y)2 = (xy + 1/2$$)2 - 1/4$$
<=> (2x+2y)2 = (2xy + 1)2 - 1
<=> (2xy + 1)2 - (2x+ 2y)2 = 1
<=> (2xy + 1+ 2x+2y).(2xy + 1 - 2x- 2y) = 1 = 1.1 = (-1).(-1)
x; y nguyên nên ta có 2 trường hợp:
TH1: 2xy + 2x+ 2y + 1 = 1 và 2xy - 2x - 2y + 1 = 1
=> xy + x + y = 0 và 2xy + 2x+ 2y + 1 + 2xy - 2x - 2y + 1 = 2
=> xy + x + y = 0 và xy = 0
=> x + y = 0 và xy = 0 => x = y = 0
Th2: tương tự
x2 + xy + y2 = x2.y2
=> x2 + 2xy + y2 = ( x. y )2 + xy
=> ( x + y )2 = xy .( xy + 1 )
=> xy . ( xy + 1 ) là số chính phương
mà ( xy,xy + 1 ) = 1 , xy < xy + 1
=> xy = xy + 1 => vô lí
hoặc xy = 0 => xy . ( xy + 1 ) = 0 = 0 2 => x + y = 0= x y => x = y = 0
Vậy x = 0 ; y = 0
\(\Leftrightarrow\left(x^2-1\right)-\left(xy+y\right)=3\)
\(\Leftrightarrow\left(x+1\right)\left(x-1\right)-y\left(x+1\right)=3\)
\(\Leftrightarrow\left(x+1\right)\left(x-y-1\right)=3\)
Ta có bảng sau:
x+1 | -3 | -1 | 1 | 3 |
x-y-1 | -1 | -3 | 3 | 1 |
x | -4 | -2 | 0 | 2 |
y | -4 | 0 | -4 | 0 |
Vậy \(\left(x;y\right)=\left(-4;-4\right);\left(-2;0\right);\left(0;-4\right);\left(2;0\right)\)
Vì \(\left|x+4\right|\ge0;\left|y-3\right|\ge0\)
mà |x+4| + |y-3| =3 và |x+4| ; |y-3| thuộc Z
\(\Rightarrow\left(\left|x+4\right|;\left|y-3\right|\right)\in\left\{\left(0;3\right)\left(1;2\right)\left(3;0\right)\left(2;1\right)\right\}\)
Tương ứng \(\left(x;y\right)\in\left\{\left(-4;6\right);\left(-3;5\right);\left(-1;3\right);\left(-2;4\right)\right\}\)
Vậy \(\left(x;y\right)\in\left\{\left(-4;6\right);\left(-3;5\right);\left(-1;3\right);\left(-2;4\right)\right\}\)