K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 4 2019

a)\(5x^2+13y^2+6xy=12x-4y\)

\(\Leftrightarrow5x^2+6x\left(y-2\right)+13y^2+4y=0\)

pt có nghiệm:\(\Delta'=9\left(y-2\right)^2-65y^2-20y\ge0\)

\(\Leftrightarrow9y^2-36y+36-65y^2-20y\ge0\)

\(\Leftrightarrow-56y^2-56y+36\ge0\)

\(y\in Z\)\(\Rightarrow-1\le y\le0\)

\(\Rightarrow y=0;1\)

Thay vào tìm x

NV
16 tháng 4 2019

Nốt câu b:

\(x^3+y^3+3xy\left(x+y\right)-3xy\left(x+y\right)-6xy-1=0\)

\(\Leftrightarrow\left(x+y\right)^3-3xy\left(x+y+2\right)+1=0\)

\(\Leftrightarrow\left(x+y\right)^3+8-3xy\left(x+y+2\right)-7=0\)

\(\Leftrightarrow\left(x+y+2\right)\left(x^2+y^2+2xy-2x-2y+4\right)-3xy\left(x+y+2\right)=7\)

\(\Leftrightarrow\left(x+y+2\right)\left(x^2+y^2-xy-2x-2y+4\right)=7\)

\(\Leftrightarrow...\)

18 tháng 8 2023

\(5x^4+10x^2+2y^6+4y^3-6=0\)

\(\Leftrightarrow5x^4+10x^2+5+2y^6+4y^3+2-7-6=0\)

\(\Leftrightarrow5\left(x^4+2x^2+1\right)+2\left(y^6+2y^3+1\right)=13\)

\(\Leftrightarrow5\left(x^2+1\right)^2+2\left(y^3+1\right)^2=13\)

mà \(\left\{{}\begin{matrix}\left(x^2+1\right)^2\ge0,\forall x\inℤ\\\left(y^3+1\right)^2\ge0,\forall y\inℤ\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2+1=1\\y^3+1=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2=0\\y^3=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=1\end{matrix}\right.\)

Vậy \(\left\{{}\begin{matrix}x=0\\y=1\end{matrix}\right.\) thỏa mãn yêu cầu của đề bài.

17 tháng 8 2023

\(y^2+2xy-3x-2=0\)

\(\Leftrightarrow\left(y^2+2xy+x^2\right)-\left(x^2+3x+2\right)=0\)

\(\Leftrightarrow\left(x+y\right)^2=\left(x+1\right)\left(x+2\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\x+2=0\end{matrix}\right.\)

Nếu \(x+1=0\) thì \(\left\{{}\begin{matrix}x=-1\\y=1\end{matrix}\right.\)

Nếu \(x+2=0\) thì \(\left\{{}\begin{matrix}x=-2\\y=2\end{matrix}\right.\)

Thử lại, ta thấy thỏa mãn. Vậy ta tìm được các cặp số \(\left(x;y\right)\) thỏa mãn đề bài là \(\left(-1;1\right),\left(-2;2\right)\)

25 tháng 11 2023

Sử dụng phương pháp đưa về dạng tích:

\(x^3+y^3=6xy+5\)

\(\Leftrightarrow\left(x+y\right)^3-3xy\left(x+y\right)-6xy=5\)

\(\Leftrightarrow\left(x+y\right)^3-3xy\left(x+y+2\right)=5\)

\(\Leftrightarrow\left(x+y\right)^3+8-3xy\left(x+y+2\right)=13\)

\(\Leftrightarrow\left(x+y+2\right)\left[\left(x+y\right)^2-2\left(x+y\right)+4-3xy\right]=13\)

Từ đây ta có: \(x+y+2\) và \(\left(x+y\right)^2-2\left(x+y\right)+4-3xy\) là 2 ước số của 13.

Với \(\left\{{}\begin{matrix}x+y+2=1\\\left(x+y\right)^2-2\left(x+y\right)+4-3xy=13\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+y=-1\\xy=-2\end{matrix}\right.\Leftrightarrow\left(x,y\right)=\left(1,-2\right);\left(-2,1\right)\)

Với \(\left\{{}\begin{matrix}x+y+2=13\\\left(x+y\right)^2-2\left(x+y\right)+4-3xy=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+y=11\\xy=34\end{matrix}\right.\Leftrightarrow x,y\in\varnothing\)

Với \(\left\{{}\begin{matrix}x+y+2=-1\\\left(x+y\right)^2-2\left(x+y\right)+4-3xy=-13\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+y=-3\\xy=\dfrac{32}{3}\end{matrix}\right.\left(loại\right)\)

Với \(\left\{{}\begin{matrix}x+y+2=-13\\\left(x+y\right)^2-2\left(x+y\right)+4-3xy=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+y=-15\\xy=\dfrac{260}{3}\left(loại\right)\end{matrix}\right.\)

Vậy...

18 tháng 2

5x2+2y+y2-4x-40=0

△=(-4)2-4.5.(2y+y2-40)

△=16-40y-20y2+800

△=-(784+40y+20y2)

△=-(32y+8y+16y2+4y2+16+4+764)

△=-[(4y+4)2+(2y+2)2+764]<0

=>PHƯƠNG TRÌNH VÔ NGHIỆM.

NV
7 tháng 1 2021

\(5x^2+2\left(3y+1\right)x+2y^2+2y-73=0\) (1)

\(\Delta'=\left(3y+1\right)^2-5\left(2y^2+2y-73\right)=-y^2-4y+366\)

\(\Delta'\) là số chính phương \(\Rightarrow-y^2-4y+366=k^2\)

\(\Leftrightarrow\left(y+2\right)^2+k^2=370=3^2+19^2=9^2+17^2\)

\(\Rightarrow\left[{}\begin{matrix}y+2=3\\y+2=19\\y+2=9\\y+2=17\end{matrix}\right.\) thế vào (1) tìm x nguyên dương

7 tháng 1 2021

Thanks nhìu :))

22 tháng 5 2017

7.  \(S=9y^2-12\left(x+4\right)y+\left(5x^2+24x+2016\right)\)

\(=9y^2-12\left(x+4\right)y+4\left(x+4\right)^2+\left(x^2+8x+16\right)+1936\)

\(=\left[3y-2\left(x+4\right)\right]^2+\left(x-4\right)^2+1936\ge1936\)

Vậy   \(S_{min}=1936\)    \(\Leftrightarrow\)    \(\hept{\begin{cases}3y-2\left(x+4\right)=0\\x-4=0\end{cases}}\)    \(\Leftrightarrow\)    \(\hept{\begin{cases}x=4\\y=\frac{16}{3}\end{cases}}\)

20 tháng 5 2017

Câu 8 bn tìm cách tách thành   

\(\left(\sqrt{x+1}-2\right)^2+\left(x-3\right)^2=0\)

22 tháng 5 2017

7.  \(S=9y^2-12\left(x+4\right)y+\left(5x^2+24x+2016\right)\)

\(=9y^2-12\left(x+4\right)y+4\left(x+4\right)^2+\left(x^2+8x+16\right)+1936\)

\(=\left[3y-2\left(x+4\right)\right]^2+\left(x-4\right)^2+1936\ge1936\)

Vậy   \(S_{min}=1936\)    \(\Leftrightarrow\)    \(\hept{\begin{cases}3y-2\left(x+4\right)=0\\x-4=0\end{cases}}\)    \(\Leftrightarrow\)    \(\hept{\begin{cases}x=4\\y=\frac{16}{3}\end{cases}}\)

22 tháng 5 2017

8. \(x^2-5x+14-4\sqrt{x+1}=0\)       (ĐK: x > = -1).

\(\Leftrightarrow\)   \(\left(x+1\right)-4\sqrt{x+1}+4+\left(x^2-6x+9\right)=0\)

\(\Leftrightarrow\)   \(\left(\sqrt{x+1}-2\right)^2+\left(x-3\right)^2=0\)

Với mọi x thực ta luôn có:   \(\left(\sqrt{x+1}-2\right)^2\ge0\)   và   \(\left(x-3\right)^2\ge0\) 

Suy ra   \(\left(\sqrt{x+1}-2\right)^2+\left(x-3\right)^2\ge0\)

Đẳng thức xảy ra   \(\Leftrightarrow\)   \(\hept{\begin{cases}\left(\sqrt{x+1}-2\right)^2=0\\\left(x-3\right)^2=0\end{cases}}\)    \(\Leftrightarrow\)    x = 3 (Nhận)