Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
\(1.\)
\(a.\)
\(\dfrac{8}{\left(x^2+3\right)\left(x^2-1\right)}+\dfrac{2}{x^2+3}+\dfrac{1}{x+1}\)
\(=\dfrac{8}{\left(x^2+3\right)\left(x^2-1\right)}+\dfrac{2\left(x^2-1\right)}{\left(x^2+3\right)\left(x^2-1\right)}+\dfrac{1\left(x-1\right)\left(x^2+3\right)}{\left(x^2-1\right)\left(x^2+3\right)}\)
\(=\dfrac{8}{\left(x^2+3\right)\left(x^2-1\right)}+\dfrac{2x^2-2}{\left(x^2+3\right)\left(x^2-1\right)}+\dfrac{x^3-x^2+3x-3}{\left(x^2-1\right)\left(x^2+3\right)}\)
\(=\dfrac{8+2x^2-2+x^3-x^2+3x-3}{\left(x^2+3\right)\left(x^2-1\right)}\)
\(=\dfrac{x^3+x^2+3x+3}{\left(x^2+3\right)\left(x^2-1\right)}\)
\(=\dfrac{x^2\left(x+1\right)+3\left(x+1\right)}{\left(x^2+3\right)\left(x^2-1\right)}\)
\(=\dfrac{\left(x^2+3\right)\left(x+1\right)}{\left(x^2+3\right)\left(x^2-1\right)}\)
\(=x-1\)
\(b.\)
\(\dfrac{x+y}{2\left(x-y\right)}-\dfrac{x-y}{2\left(x+y\right)}+\dfrac{2y^2}{x^2-y^2}\)
\(=\dfrac{x+y}{2\left(x-y\right)}-\dfrac{x-y}{2\left(x+y\right)}+\dfrac{2y^2}{\left(x-y\right)\left(x+y\right)}\)
\(=\dfrac{\left(x+y\right)^2}{2\left(x^2-y^2\right)}-\dfrac{\left(x-y\right)^2}{2\left(x^2-y^2\right)}+\dfrac{4y^2}{2\left(x^2-y^2\right)}\)
\(=\dfrac{x^2+2xy+y^2}{2\left(x^2-y^2\right)}-\dfrac{x^2-2xy+y^2}{2\left(x^2-y^2\right)}+\dfrac{4y^2}{2\left(x^2-y^2\right)}\)
\(=\dfrac{x^2+2xy+y^2-x^2+2xy-y^2+4y^2}{2\left(x^2-y^2\right)}\)
\(=\dfrac{4xy+4y^2}{2\left(x^2-y^2\right)}\)
\(=\dfrac{4y\left(x+y\right)}{2\left(x^2-y^2\right)}\)
\(=\dfrac{2y}{\left(x-y\right)}\)
Tương tự các câu còn lại
![](https://rs.olm.vn/images/avt/0.png?1311)
Trả lời:
a, \(\left(x^2-2y\right)\left(x^4+2x^2y+4y^2\right)-x^3\left(x-y\right)\left(x^2+xy+y^2\right)+8y^3\)
\(=\left(x^2\right)^3-\left(2y\right)^3-x^3\left(x^3-y^3\right)+8y^3\)
\(=x^6-8y^3-x^6+x^3y^3+8y^3\)
\(=x^3y^3\)
b, \(\left(x-2\right)\left(x^2+2x+4\right)-\left(x-1\right)^3+7\)
\(=x^3-8-\left(x^3-3x^2+3x-1\right)+7\)
\(=x^3-8-x^3+3x^2-3x+1+7\)
\(=3x^2-3x\)
c, \(x\left(x+2\right)\left(2-x\right)+\left(x+3\right)\left(x^2-3x+9\right)\)
\(=x\left(4-x^2\right)+x^3+27\)
\(=4x-x^3+x^3+27\)
\(=4x+27\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 1 :
a ) \(2x\left(x+1\right)+2\left(x+1\right)=\left(x+1\right)\left(2x+2\right)=2\left(x+1\right)^2\)
b ) \(y^2\left(x^2+y\right)-zx^2-zy=y^2\left(x^2+y\right)-z\left(x^2+y\right)=\left(x^2+y\right)\left(y^2-z\right)\)
c ) \(4x\left(x-2y\right)+8y\left(2y-x\right)=4x\left(x-2y\right)-8y\left(x-2y\right)=4\left(x-2y\right)^2\)
d ) \(3x\left(x+1\right)^2-5x^2\left(x+1\right)+7\left(x+1\right)=\left(x+1\right)\left(3x^2+3x-5x^2+7\right)=\left(x+1\right)\left(3x-2x^2+7\right)\)
e ) \(x^2-6xy+9y^2=\left(x-3x\right)^2\)
Bài 1 :
f ) \(x^3+6x^2y+12xy^2+8y^3=\left(x+2y\right)^3\)
g ) \(x^3-64=\left(x-4\right)\left(x^2+4x+16\right)\)
h ) \(125x^3+y^6=\left(5x+y^2\right)\left(25x^2-5xy^2+y^4\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(1,x^3-7x+6\)
\(=x^3+3x^2-3x^2-9x+2x+6\)
\(=x^2\left(x+3\right)-3x\left(x+3\right)+2\left(x+3\right)\)
\(=\left(x+3\right)\left(x^2-3x+2\right)\)
\(=\left(x+3\right)\left(x^2-2x-x+2\right)\)
\(=\left(x+3\right)\left(x-2\right)\left(x-1\right)\)
\(2,x^3-9x^2+6x+16\)
\(=x^3+x^2-10x^2-10x+16x+16\)
\(=x^2\left(x+1\right)-10x\left(x+1\right)+16\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2-10x+16\right)\)
\(=\left(x+1\right)\left(x^2-2x-8x+16\right)\)
\(=\left(x+1\right)\left(x-8\right)\left(x-2\right)\)
mk ms lm hai câu thôi mà đã mệt r , bh mk lm bt mai đi học ,lúc khác lm đ cko bn
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(5x-10x^2\) = \(5x\left(1-2x\right)\)
b) Mạn phép sửa đề:
\(\dfrac{1}{2}x\left(x^2-4\right)+4\left(x+2\right)\) = \(\left(x+2\right)\left[\dfrac{1}{2}x\left(x-2\right)+4\right]\)
= \(\left(x+2\right)\left(\dfrac{1}{2}x^2-x+4\right)\)
c) \(x^4-y^6=\left(x^2-y^3\right)\left(x^2+y^3\right)\)
e) \(x^3-4x^2+4x-1=x^3-x^2-3x^2+3x+x-1\)
= \(x^2\left(x-1\right)-3x\left(x-1\right)+\left(x-1\right)\)
= \(\left(x-1\right)\left(x^2-3x+1\right)\)
g) \(x^4+6x^3-12x^2-8x\)
= \(x\left(x^3-2x^2+8x^2-16x+4x-8\right)\)
= \(x\left[x^2\left(x-2\right)+8x\left(x-2\right)+4\left(x-2\right)\right]\)
= \(x\left(x-2\right)\left(x^2+8x+4\right)\)
h) \(\left(x^2+4x+8\right)^2+3x\left(x^2+4x+8\right)+2x^2\) (*)
Đặt \(x^2+4x+8=a\) => (*) trở thành:
\(a^2+3ax+2x^2\) = \(a^2+ãx+2ax+x^2\)
= \(a\left(a+x\right)+2x\left(a+x\right)\)
= \(\left(a+x\right)\left(a+2x\right)\) (1)
Thay \(a=x^2+4x+8\) vào (1) ta được:
\(\left(x^2+5x+8\right)\left(x^2+6x+8\right)\)
=\(\left(x^2+5x+8\right)\left(x^2+2x+4x+8\right)\)
= \(\left(x^2+5x+8\right)\left[x\left(x+2\right)+4\left(x+2\right)\right]\)
= \(\left(x+2\right)\left(x+4\right)\left(x^2+5x+8\right)\)
P/s: Còn câu f đang suy nghĩ!
c/ \(x^2+\left(x+1\right)^2=y^4+\left(y+1\right)^4\)
\(\Leftrightarrow x^2+x+1=\left(y^2+y+1\right)^2\)
\(\Leftrightarrow4x^2+4x+4=\left(2y^2+2y+2\right)^2\)
\(\Leftrightarrow\left(2y^2+2y+2\right)^2-\left(2x+1\right)^2=3\)
\(\Leftrightarrow\left(2y^2+2y+2-2x-1\right)\left(2y^2+2y+2+2x+1\right)=3\)