K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 5 2017

\(5x^2+8y^2=20412\)

Vì \(8y^2⋮2\)và \(20412⋮2\)\(\rightarrow5x^2⋮2\rightarrow x^2⋮2\rightarrow x⋮2.\)

Đặt \(x=2k\left(k\in Z\right)\), ta có:

\(5\times4k^2+8y^2=20412\)

\(\leftrightarrow5k^2+2y^2=5103\)

Vì \(5103\)lẻ và \(2y^2\)chẵn nên \(5k^2\)lẻ \(\rightarrow k\)lẻ.

      +) Nếu \(y\) chẵn thì \(2y^2⋮4\)nên \(5103\)và \(5k^2\)có cùng số dư khi chia cho\(4\)

         Ta thấy \(5103\div4\)dư \(3\)thì \(5k^2\div4\)dư \(3\)\(\rightarrow k^2\div4\) dư \(3\).

         Vô lý, một số chính phương chia cho \(4\) chỉ có thể dư \(0\)hoặc\(1\).

       +) Nếu\(y\)lẻ thì \(y^2\)chỉ có tận cùng là \(1,5,9\)nên \(2y^2\)có tận cùng là \(2,0,8\)

          mà \(5k^2\)có tận cùng là 5 \(\rightarrow\)\(y^2\)có tận cùng là \(9\)

          \(\rightarrow y\)có tận cùng là\(3,7\)

Thử bằng máy tính cầm tay với các giá trị của \(y=3,13,23,33,43,7,17,27,37,47\)ta tìm được \(y=27\)thỏa mãn

\(\rightarrow k=27\rightarrow x=54\)

Vậy phương trình có nghiệm nghuyên là \(\left(x;y\right)=\left(54;27\right)\)

18 tháng 2

5x2+2y+y2-4x-40=0

△=(-4)2-4.5.(2y+y2-40)

△=16-40y-20y2+800

△=-(784+40y+20y2)

△=-(32y+8y+16y2+4y2+16+4+764)

△=-[(4y+4)2+(2y+2)2+764]<0

=>PHƯƠNG TRÌNH VÔ NGHIỆM.

22 tháng 10 2017

x² + 2xy + 2y² - 5x - 5y = -6

<=> x² + 2xy + y² - 5(x + y) + y² = -6

<=> (x + y)² - 5(x + y) = - 6 - y²

<=> (x + y)² - 5(x + y) + 25/4 = 25/4 - 6 - y²

<=> (x + y - 5/2)² = (1 - 4y²)/4

<=> (2x + 2y - 5)² = 1 - 4y²

<=> (2x + 2y - 5)² + 4y² = 1 (*)

Từ (*) ta thấy nếu x, y là các số thực thì có vô số cặp (x, y) thỏa.

có thể đề ghi thiếu, ở đây tôi tìm các cặp (x, y) nguyên

*nếu y ≠ 0 thì 4y² ≥ 4, không thỏa (*)

*Vậy y = 0, thay vào (*):

(2x - 5)² = 1

+2x - 5 = -1 => x = 2

+2x - 5 = 1 => x = 3

Vậy có hai cặp nguyên (x, y) thỏa là: (2, 0) và (3, 0)

18 tháng 8 2023

\(5x^4+10x^2+2y^6+4y^3-6=0\)

\(\Leftrightarrow5x^4+10x^2+5+2y^6+4y^3+2-7-6=0\)

\(\Leftrightarrow5\left(x^4+2x^2+1\right)+2\left(y^6+2y^3+1\right)=13\)

\(\Leftrightarrow5\left(x^2+1\right)^2+2\left(y^3+1\right)^2=13\)

mà \(\left\{{}\begin{matrix}\left(x^2+1\right)^2\ge0,\forall x\inℤ\\\left(y^3+1\right)^2\ge0,\forall y\inℤ\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2+1=1\\y^3+1=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2=0\\y^3=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=1\end{matrix}\right.\)

Vậy \(\left\{{}\begin{matrix}x=0\\y=1\end{matrix}\right.\) thỏa mãn yêu cầu của đề bài.

29 tháng 8 2023

Đặt x = -2y + k (k \(\inℤ\))

Ta có x2 + 8y2 + 4xy - 2x - 4y = 4

<=> (-2y + k)2 + 8y2 + 4y(-2y + k) - 2(-2y + k) - 4y = 4

<=> k2 + 4y2 - 2k = 4

<=> (k - 1)2 + (2y)2 = 5 (*) 

Dễ thấy (2y)2 \(⋮4\) (**)

Với y,k \(\inℤ\) kết hợp (*) ; (**) ta được 

\(\left\{{}\begin{matrix}\left(k-1\right)^2=1\\\left(2y\right)^2=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}k=0\\k=2\end{matrix}\right.\\y=\pm1\end{matrix}\right.\) 

Vậy (k,y) = (0;1) ; (0;-1) ; (2;1) ; (2;-1) 

mà x = k - 2y nên các cặp (x;y) thỏa là (-2;1) ; (2;-1) ; (0;1) ; (4;-1)