Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) (x+1)+(x+2)+(x+3)+........+(x+100)=5750
(x+x+...+x)+(1+2+3+...+100)=5750
(x.100)+(1+100).100:2=5750
(x.100)+5050=5750
x.100=5750-5050
x.100=700
x =700:100
x = 7
Vậy x = 7
c) trước hết cần chú ý rằng mọi số tự nhiên đều viết được dưới 1 trong 3 dạng: 3k, 3k +1 hoặc 3k +2(với k là số tự nhiên)
+) Nếu p = 3k vì p là số nguyên tố nên k = 1 => p = 3 => p+10 = 13 là số nguyên tố; p+14 = 17 là số nguyên tố (1)
+) Nếu p = 3k +1 => p +14 = 3k+1+14 = 3k+15 = 3(k+5) chia hết cho 3 và lớn hơn 3 nên là hợp số (loại vì không thỏa mãn điều kiện đề bài) (2)
+) Nếu p=3k+2 => p+10 = 3k+2+10 = 3k+12 = 3(k+4) chia hết cho 3 và lớn hơn 3 nên là hợp số (loại vì không thỏa mẫn điều kiện đề bài) (3)
Từ (1), (2), (3) suy ra p = 3 là giá trị cần tìm.
Vậy nha còn câu b mình tạm thời chưa biết, chúc bạn học tốt
ab+2a-b=3
a(b+2)-b=3
a(b+2)-b+2=3+2
(b+2)(a-1)=5
sau đó bạn tìm các nghiệm cho chúng thỏa mãn nhé(cho là hai số trên thuộc ước của 5 rồi tính)
đề bài là chứng minh với a thuộc Z các cặp số sau là các số nguyên tố cùng nhau nha
xin lỗi tớ nhầm
Đặt 2p + 1 = n³ với n là số tự nhiên
Cách giải: phân tích ra thừa số
Dùng tính chất : Số nguyên tố có 2 ước là 1 và chính nó.
Giải:
♣ Ta thấy p = 2 thì 2p + 1 = 5 không thỏa = n³
♣ Nếu p > 2 => p lẻ (Do Số nguyên tố chẵn duy nhất là 2 )
Mặt khác : 2p + 1 là 1 số lẻ => n³ là một số lẻ => n là một số lẻ
=> 2p + 1 = (2k + 1)³ ( với n = 2k + 1 )
<=> 2p + 1 = 8k³ + 12k² + 6k + 1
<=> p = k(4k² + 6k + 3)
=> p chia hết cho k
=> k là ước số của số nguyên tố p.
Do p là số nguyên tố nên k = 1 hoặc k = p
♫ Khi k = 1
=> p = (4.1² + 6.1 + 3) = 13 (nhận)
♫ Khi k = p
=> (4k² + 6k + 3) = (4p² + 6p + 3) = 1
Do p > 2 => (4p² + 6p + 3) > 2 > 1
=> không có giá trị p nào thỏa.
Đáp số : p = 13
=> ab - 2a + 3b = 0-1 =-1
a(b - 2) + 3b = -1
a(b -2) + 3b - 6+ 6 = -1
a(b - 2) + 3b - 3 . 2 = -1 - 6= -7
a(b - 2) + 3(b - 2) = -7
(b -2) (a + 3) = -7
Có -7 = (-1). 7 = (-7) . 1
=> +) b - 2= -1 và a + 3 = 7
+) b - 2 = -7 và a + 3 = 1
lập bảng :
b+2 | -1 | -7 |
b | -3 | -9 |
a+3 | 7 | 1 |
a | 4 | -2 |
vậy: +) b = -3 và a = 4
+) b = -9 và a = -2
Ta có :
\(ab+2a-b=3\)
\(\Leftrightarrow\)\(a\left(b+2\right)-b-2=1\)
\(\Leftrightarrow\)\(a\left(b+2\right)-\left(b+2\right)=1\)
\(\Leftrightarrow\)\(\left(a-1\right)\left(b+2\right)=1\)
Đến đây bạn xét các trường hợp ra
Chúc bạn học tốt
Lời giải:
$2a=78-3a-6b=3(26-a-2b)\vdots 3$
$\Rightarrow a\vdots 3$. Mà $a$ nguyên tố nên $a=3$
Khi đó:
$2.3+3b+6c=78$
$3b+6c=72$
$b+2c=72:3=24$
$\Rightarrow b=24-2c\vdots 2$. Mà $b$ nguyên tố nên $b=2$
Suy ra:
$2+2c=24$
$2c=24-2=22$
$c=22:2=11$ (tm)
Vậy $(a,b,c)=(3,2,11)$
Ta có: 2a và 6c là các số chẵn, kết quả 78 là số chẵn
Suy ra 3b phải là số chẵn => b là số chẵn, mà b là số nguyên tố
Suy ra b=2 (2 là số nguyên tố chẵn duy nhất)
Vậy ta có: 2a+6+6c = 78
Suy ra 2a+ 6c= 72
Suy ra a+ 3c = 36( Chia cả 2 vế cho 2)
Ta có 3c chia hết cho 3, kết quả 36 cũng chia hết cho 3
Suy ra a phải chia hết cho 3. Mà a là số nguyên tố
Suy ra a=3 (số nguyên tố duy nhất chia hết cho 3).
Suy ra 3+3c = 36 => c=11 (chấp nhận vì 11 là số nguyên tố).
Suy ra a=3, b=2, c=11.
( a ; b ) thuộc {( 2 ;17 )}.