Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì xy = ( x + y )
<=> x.( y - 1 ) - y = 0
<=> x. ( y - 1 ) - ( y - 1) = 1
Vì x và y là hai số nguyên
=> ( x - 1 ) và ( y - 1 ) cũng là số nguyên
Xét các hệ phương trình :
* x - 1 = 1 ; y - 1 = 1 <=> ( x ; y ) = ( 2 ; 2 )
* x - 1 = -1 ; y - 1 = -1 <=> ( x ; y ) = ( 0 ; 0 )
Vậy có hai cặp số nguyên thỏa mãn phương trình là : ( 2 ; 2 ) và ( 0 ; 0 )
a)Vì x,y ko âm =>x,y>0
=>ko tồn tại
b)Có vô số nghiệm x,y
Vd:1 và 0
-2 và 3
-3 và 4
.....
\(x^2-xy+y+1=0\)
\(\Leftrightarrow\left(x^2-1\right)-y\left(x-1\right)+2=0\)
\(\Leftrightarrow\left(x+1-y\right)\left(x-1\right)=-2\)
\(\Rightarrow x-1;x+1-y\inƯ\left(-2\right)=\left\{\pm1;\pm2\right\}\)
x - 1 | 1 | -1 | 2 | -2 |
x + 1 - y | 2 | -2 | 1 | -1 |
x | 2 | 0 | 3 | -1 |
y | 1 | 3 | 3 | 1 |
bảng mình xét nhầm nhé phải là như này :
x - 1 | 1 | -1 | 2 | -2 |
x + 1 - y | -2 | 2 | -1 | 1 |
x | 2 | 0 | 3 | -1 |
y | 5 | -1 | 5 | 1 |
\(xy-x-2y=21\)
\(\Rightarrow x\left(y-1\right)=21+2y\)
\(\Rightarrow x=\dfrac{2y+21}{y-1}\)
Vì \(x\) là số nguyên nên \(\left(2y+21\right)⋮\left(y-1\right)\)
\(\Rightarrow\left(2y-2+23\right)⋮\left(y-1\right)\)
\(\Rightarrow23⋮\left(y-1\right)\)
\(\Rightarrow y-1\inƯ\left(23\right)\)
\(\Rightarrow y-1\in\left\{1;-1;23;-23\right\}\)
\(\Rightarrow y\in\left\{2;0;24;-22\right\}\)
\(\Rightarrow x\in\left\{25;-21;3;1\right\}\)
-Vậy các cặp số \(\left(x;y\right)\) là \(\left(2;25\right)\), \(\left(0;-21\right)\), \(\left(24;-21\right)\), \(\left(-22;1\right)\).
Answer:
\(2+5y^2=6\)
\(5y^2=6-2\)
\(5y^2=4\)
\(5y^2=2^2\)
\(\Rightarrow5y=2\)
\(y=2\div5\)
\(y=\dfrac{2}{5}\)
Vậy \(y=\dfrac{2}{5}\)