Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(\frac{2b+1}{10}=\frac{1}{a}\)
\(\Leftrightarrow\left(2b+1\right)a=10\)
\(\Leftrightarrow2ab+a=10\)
\(\Leftrightarrow2ab=10-a\)
\(\Rightarrow\begin{cases}a=2\\b=2\end{cases}\)
b, \(\frac{a}{4}-\frac{1}{2}=\frac{3}{b}\)
\(\Leftrightarrow\frac{a-2}{4}=\frac{3}{b}\)
\(\Leftrightarrow\left(a-2\right)b=12\)
\(\Rightarrow a-2=12b\)
Bạn thế a vô rồi tính b chẳng hạn : \(\begin{cases}a=14\\b=1\end{cases}\)
\(\frac{2}{a}-\frac{b+1}{3}=\frac{1}{2}\)
=> \(\frac{6-ab+a}{3a}=\frac{1}{2}\)
=> 2(6 - ab + a) = 3a
=> 12 - 2ab + 2a = 3a
=> 2ab + a = 12
=> a(2b + 1) = 12
Ta có 12 = 1.12 = (-1).(-12) = 3.4 = (-3).(-4) = 6.2 = (-6).(-2)
Lập bảng xét 12 trường hợp
a | 1 | 12 | -1 | -12 | 4 | 3 | -4 | -3 | 6 | 2 | -2 | -6 |
2b + 1 | 12 | 1 | -12 | -1 | 3 | 4 | -3 | -4 | 2 | 6 | -6 | -2 |
b | 5,5 | 0 | -6,5 | -1 | 1 | 1,5 | -2 | -2,5 | 0,5 | 2,5 | -3,5 | -1,5 |
Vậy các cặp (a;b) nguyên thỏa mãn là (12 ; 0) ;(-12 ; -1) ; (4 ; 1) ; (-4 ; -2)
Bg (phải thế này không ?)
\(\frac{2}{a}-\frac{b+1}{3}=\frac{1}{2}\)
\(\frac{2}{a}=\frac{1}{2}+\frac{b+1}{3}\)
\(\frac{2}{a}=\frac{3}{6}+\frac{2.\left(b+1\right)}{6}\)
\(\frac{2}{a}=\frac{3}{6}+\frac{2b+2}{6}\)
\(\frac{2}{a}=\frac{3+2b+2}{6}\)
\(\frac{2}{a}=\frac{2b+5}{6}\)
\(\frac{12}{a}=2b+5\)
\(a.\left(2b+5\right)=12\)= 1.12 = 12.1 = 3.4 = 4.3 = 2.6 = 6.2 = -1.(-12) = -12.(-1) = -3.(-4) = -4.(-3) = -2.(-6) = -6.(-2)
Nhận thấy 2b + 5 lẻ
=> a.(2b + 5) = 12.1 = 4.3 = -12.(-1) = -4.(-3)
Lập bảng:
a = 12 | 2b + 5 = 1 | a = 4 | 2b + 5 = 3 | a = -12 | 2b + 5 = -1 | a = -4 | 2b + 5 = -3 |
=> b = -2 | => b = -1 | => b = -3 | => b = -4 |
Vậy các cặp {a; b} thỏa mãn là: (12; -2) ; (4; -1) ; (-12; -3) ; (-4; -4)
\(\Leftrightarrow\frac{a-2}{4}=\frac{3}{b}\)
\(\Leftrightarrow\left(a+2\right)b=3.4\)
\(\Leftrightarrow ab+2b=12\)
bạn tự giải tiếp nhé!
\(\frac{1}{a}+\frac{1}{b}=\frac{1}{ab}\)
=> \(\frac{a+b}{ab}=\frac{1}{ab}\)=> a+b=1 => a,b là số nguyên sao cho a+b=1
\(\frac{1}{a}+\frac{1}{b}=\frac{1}{ab}\)
\(\frac{b}{ab}+\frac{a}{ab}=\frac{1}{ab}\)
\(\frac{b+a}{ab}=\frac{1}{ab}\)
\(\Rightarrow b+a=1\)
Vậy các giá trị nguyên của a,b phụ thuộc vào b + a = 1