K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 3 2017

a=2,25;b=1

14 tháng 3 2017

Cảm ơn

12 tháng 3 2017

đặt \(\sqrt{a-2}\)=u ta có phương trình \(ub^2-b+u=0\)

\(\Delta=1-4u^2\ge0\Leftrightarrow u\le\frac{1}{2}\)nên gtln của u=\(\frac{1}{2}\Rightarrow\sqrt{a-2}lớnnhất=\frac{1}{2}\)nên a lớn nhất=9/2 và b=1

11 tháng 10 2019

\(\sqrt{a-2}.b^2=b-\sqrt{a-2}\left(a\ge2\right)\)

\(\Leftrightarrow\sqrt{a-2}.b^2-b+\sqrt{a-2}=0\)

Để pt có nghiệm \(\Leftrightarrow\Delta A\ge0\)

\(\Leftrightarrow1-4\left(a-2\right)=0\Leftrightarrow9-4a\ge0\Leftrightarrow a\le2,25\)

Khi đó a đạt GTLN là 2,25

Với a = 2,25 ta có \(\frac{1}{2}b^2=b-\frac{1}{2}\Leftrightarrow b^2-2b+1=0\Leftrightarrow b=1\)

Vậy cặp (a;b) cần tìm là : ( 2,25 ; 1 )

Chúc bạn học tốt !!!

AH
Akai Haruma
Giáo viên
15 tháng 3 2021

Lời giải:

Áp dụng BĐT Bunhiacopxky:

$C^2\leq (a+b)[(29a+3b)+(29b+3a)]=32(a+b)^2$

$(a+b)^2\leq (a^2+b^2)(1+1)\leq 4$

$\Rightarrow C^2\leq 32.4$

$\Rightarrow C\leq 8\sqrt{2}$
Vậy $C_{\max}=8\sqrt{2}$. Dấu "=" xảy ra khi $a=b=1$

28 tháng 5 2022

Ta có : \(b=\dfrac{c+a}{2}\Rightarrow2b=c+a\Rightarrow a-b=b-c\)

Dó đó : \(P=\left(\dfrac{1}{\sqrt{a}+\sqrt{b}}+\dfrac{1}{\sqrt{b}+\sqrt{c}}\right)\left(\sqrt{a}+\sqrt{c}\right)\)

\(P=\left[\dfrac{\sqrt{a}-\sqrt{b}}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}+\dfrac{\sqrt{b}-\sqrt{c}}{\left(\sqrt{b}+\sqrt{c}\right)\left(\sqrt{b}-\sqrt{c}\right)}\right]\left(\sqrt{a}+\sqrt{c}\right)\)

\(P=\left[\dfrac{\sqrt{a}-\sqrt{b}}{a-b}+\dfrac{\sqrt{b}-\sqrt{c}}{b-c}\right]\left(\sqrt{a}+\sqrt{c}\right)\)

\(P=\left[\dfrac{\sqrt{a}-\sqrt{b}}{b-c}+\dfrac{\sqrt{b}-\sqrt{c}}{b-c}\right]\left(\sqrt{a}+\sqrt{c}\right)\) Vì  \(\left(a-b=b-c\right)\)

 

\(P=\left[\dfrac{\sqrt{a}-\sqrt{b}+\sqrt{b}-\sqrt{c}}{b-c}\right]\left(\sqrt{a}+\sqrt{c}\right)\)

\(P=\dfrac{\sqrt{a}-\sqrt{c}}{b-c}\left(\sqrt{a}+\sqrt{c}\right)\)

\(P=\dfrac{a-c}{a-b}=\dfrac{a-c}{a-\dfrac{a+c}{2}}=\dfrac{a-c}{\dfrac{2a-a-c}{2}}=\dfrac{a-c}{\dfrac{a-c}{2}}=2\)