Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1,\(T=a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)=20\left(a^2-ab+b^2\right)=\)
\(=10\left(a^2-2ab+b^2\right)+10\left(a^2+b^2\right)\)
\(\ge10\left(a-b\right)^2+5.\left(a+b\right)^2\ge0+5.20^2=2000\)
2,a,\(\sqrt{a}+\sqrt{b-1}+\sqrt{c-2}=\frac{1}{2}\left(a+b+c\right)\)
\(\Leftrightarrow a-2\sqrt{a}+b-2\sqrt{b-1}+c-2\sqrt{c-2}=0\)
\(\Leftrightarrow a-2\sqrt{a}+1+b-1-2\sqrt{b-1}+1+c-2+2\sqrt{c-2}+1=0\)
\(\Leftrightarrow\left(\sqrt{a}-1\right)^2+\left(\sqrt{b-1}-1\right)^2+\left(\sqrt{c-2}-1\right)^2=0\)
\(\Rightarrow\hept{\begin{cases}a=1\\b=2\\c=3\end{cases}}\)
b,sai đề
Xét \(\frac{a+b}{2}\ge\sqrt{ab}\Rightarrow10\ge\sqrt{ab}\Leftrightarrow100\ge ab\)
\(T=a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)=20\left(a^2-ab+b^2\right)=20\left[a^2+2ab+b^2-3ab\right]=20\left(20\right)^2-6ab\)
\(T\ge20.20^2-6.100=7400\)
B3 mk tìm đc cách giải r nhưng bạn nào muốn thì trả lời cg đc
Các bạn giải giúp mình B2 và B5 nhé. Mấy bài kia mình giải được rồi.
Chú ý: \(2a^2+ab+2b^2=\frac{5}{4}\left(a+b\right)^2+\frac{3}{4}\left(a-b\right)^2\ge\frac{5}{4}\left(a+b\right)^2\) là ok liền:D
Mấy bạn ơi , cho tớ hỏi:
Luật tính điểm hỏi đáp là gì?
Làm thế nào để câu trả lời của mình đứng đầu tiên trong các câu trả lời?
Ai trả lời nhanh mình tích cho.
Áp dụng bđt : x^2+y^2+z^2 >= (x+y+z)^2/3 ta có :
\(\frac{\sqrt{b^2+2a^2}}{ab}\)= \(\frac{\sqrt{a^2+b^2+a^2}}{ab}\)>= \(\frac{\sqrt{\frac{\left(a+b+a\right)^2}{3}}}{ab}\) = \(\frac{2a+b}{\sqrt{3}ab}\) = \(\frac{2}{\sqrt{3}b}+\frac{1}{\sqrt{3}a}\)
Tương tự : \(\frac{\sqrt{c^2+2b^2}}{bc}\)>= \(\frac{2}{\sqrt{3}c}+\frac{1}{\sqrt{3}b}\) ; \(\frac{\sqrt{a^2+2c^2}}{ac}\)>= \(\frac{2}{\sqrt{3}a}+\frac{1}{\sqrt{3}c}\)
=> \(\frac{\sqrt{b^2+2a^2}}{ab}\)+ \(\frac{\sqrt{c^2+2b^2}}{bc}\)+ \(\frac{\sqrt{a^2+2c^2}}{ac}\)>= \(\frac{3}{\sqrt{3}a}+\frac{3}{\sqrt{3}b}+\frac{3}{\sqrt{3}c}\)
= \(\frac{3}{\sqrt{3}}\).(1/a+1/b+1/c) = \(\sqrt{3}\).(ab+bc+ca)/abc = \(\sqrt{3}\).abc/abc = \(\sqrt{3}\)
Dấu "=" xảy ra <=> a=b=c=3
=> ĐPCM
k mk nha
Nè bạn :)
Ta có : \(2ab+2ac\ge4a\sqrt{bc}\) (Cauchy_)
\(\Rightarrow a^2+2ab+2ac+4bc\ge a^2+4a\sqrt{bc}+4bc\)
\(\Rightarrow a^2+2ab+2ac+4bc\ge\left(a+2\sqrt{bc}\right)^2\)
\(\Rightarrow\sqrt{\left(a+2b\right)\left(a+2c\right)}\ge a+2\sqrt{bc}\)\(\left(1\right)\)
Tương tự : \(\sqrt{\left(b+2a\right)\left(b+2c\right)}\ge b+2\sqrt{ac}\)\(\left(2\right)\)
\(\sqrt{\left(c+2a\right)\left(c+2b\right)}\ge c+2\sqrt{ab}\)\(\left(3\right)\)
Từ \(\left(1\right);\left(2\right);\left(3\right)\)\(\Rightarrow\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2\ge3\)
\(\Rightarrow\sqrt{a}+\sqrt{b}+\sqrt{c}\ge\sqrt{3}\)
Đẳng thức xảy ra khi \(a=b=c=\frac{1}{\sqrt{3}}\)
Thay vào biểu thức M ta được M = \(\frac{\sqrt{3}}{3}\)
Ez to prove \(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)
\(\Leftrightarrow\frac{\left(a+b+c\right)^2}{3}\ge ab+bc+ca\)
\(\Leftrightarrow\frac{6054}{3}\ge ab+bc+ca\Leftrightarrow ab+ca+bc\le2018\)
Khi đó: \(\frac{2a}{\sqrt{a^2+2018}}\le\frac{2a}{\sqrt{a^2+ab+bc+ca}}=\frac{2a}{\sqrt{\left(a+b\right)\left(a+c\right)}}\le\frac{a}{a+b}+\frac{a}{a+c}\)
Tương tự cho 2 BĐT còn lại rồi cộng theo vế:
\(P\le\frac{a+b}{a+b}+\frac{b+c}{b+c}+\frac{c+a}{c+a}=3\)
Với a,b > = 0 và a + b = a2b2
Ta có:
\(VT=\sqrt{a+b+4\sqrt{a+b+2ab+1}}=\sqrt{a^2b^2+4\sqrt{a^2b^2+2ab+1}}\)
\(=\sqrt{a^2b^2+4\sqrt{\left(ab+1\right)^2}}=\sqrt{a^2b^2+4\left(ab+1\right)}\)
\(=\sqrt{a^2b^2+4ab+4}=\sqrt{\left(ab+2\right)^2}=ab+2=VP\)
=> đpcm
\(ab=\sqrt{2}\Leftrightarrow a\sqrt{2b}=2\Leftrightarrow a^3\left(\sqrt{2b}\right)^3=8\)
Đặt \(x=a^3\)và \(y=\left(\sqrt{2b}\right)^3\Rightarrow xy=8\)và \(x+y=9\)
=> x;y là 2 nghiệm của ptrình \(x^2-9x+8=0\)( Viét đảo)
giải ra được \(\left(a;b\right)=\left(1;\sqrt{2}\right)\)và \(\left(a;b\right)=\left(2;\frac{\sqrt{2}}{2}\right)\)