Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
Ta có
\(\frac{x}{2}=\frac{y}{5}\Rightarrow\frac{3x}{6}=\frac{y}{5}\)
Áp dụng tc của dãy tỉ só bằng nhau
\(\Rightarrow\frac{3x}{6}=\frac{y}{5}=\frac{3x-y}{6-5}=\frac{10}{1}=10\)
=> x=2.10=20
y=5.10=50
Ta có
\(\frac{x}{2}=\frac{y}{5}\Rightarrow\frac{x^2}{4}=\frac{y^2}{25}=\frac{xy}{10}=\frac{30}{10}=3\)
\(\Rightarrow\left[\begin{array}{nghiempt}x=\sqrt{12}\\x=-\sqrt{12}\end{array}\right.\)
\(\left[\begin{array}{nghiempt}y=\sqrt{75}\\y=-\sqrt{75}\end{array}\right.\)
Mà 2;5 cùng dấu
=> x; y cùng dấu
Vậy \(\left(x;y\right)=\left(\sqrt{12};\sqrt{75}\right);\left(-\sqrt{12};-\sqrt{75}\right)\)
a) Ta có: \(\frac{x}{6}=\frac{5}{24}\)
\(\Rightarrow x.24=5.6\)
\(\Leftrightarrow x.24=30\)
\(\Leftrightarrow x=30:24=\frac{5}{4}\)
Vậy \(\frac{x}{6}=\frac{5}{24}\Leftrightarrow\frac{\frac{5}{4}}{6}\)
b) Ta có: \(\frac{\left(-4\right)}{y}=\frac{20}{14}\)
\(\Leftrightarrow\left(-4\right).14=y.20\)
\(\Leftrightarrow\left(-56\right)=y.20\)
\(\Leftrightarrow y=\left(-56\right):20=-\frac{14}{5}\)
Lưu ý: Các đề trên ko thể chuyển thành số nguyên nên mình đành ghi vậy
a,x/2=y/5
<=> 2x/4=y/5=2x+y/4+5=18/9=2
+,x/2=2 => x=4
+, y/5=2 => y=10
g, x/2=y/5
đặt x/2=y/5=k
=> x=2k ; y=5k
ta có 2k.5k=90
k2.10=90
k2=9
=> k=3 k=-3
+, x/2=2=> x=4 x/2=-2 => x=-4
+, y/5=2 => y=10 y/5=-2 => y=-10
CÁC Ý SAU BN LÀM NỐT NHÉ DỄ MÀ
a) Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\frac{x}{2}=\frac{y}{5}=\frac{2x+y}{4+5}=\frac{18}{9}=2\)
\(\Rightarrow x=4;y=10\)
mấy bài còn lại tương tự
Cách 2 ngoài cách bạn dưới
\(\frac{x}{3}=\frac{y}{4}\Rightarrow\left(\frac{x}{3}\right)^2=\frac{x}{3}\cdot\frac{y}{4}\)
\(\Leftrightarrow\frac{x^2}{9}=\frac{xy}{12}=\frac{20}{12}\)
\(\frac{x^2}{9}=\frac{15}{9}\)
\(x^2=15\Leftrightarrow x=\sqrt{15}\)
\(\frac{y^2}{16}=\frac{5}{3}\Leftrightarrow\frac{3\cdot y^2}{48}=\frac{80}{48}\)
\(\Leftrightarrow y=\pm\frac{4\sqrt{5}}{\sqrt{3}}\)
Đặt \(\frac{x}{3}=\frac{y}{4}=k\)
Suy ra x= 3k ; y = 4k
Mặt khác \(xy=20\Rightarrow3k.4k=20\Rightarrow12k^2=20\Rightarrow k^2=\frac{3}{5}\Rightarrow k=\sqrt{\frac{3}{5}}\)hoặc \(k=-\sqrt{\frac{3}{5}}\)
Với \(k=\sqrt{\frac{3}{5}}\Rightarrow x=3.\sqrt{\frac{3}{5}};y=4.\sqrt{\frac{3}{5}}\)
Với \(k=-\sqrt{\frac{3}{5}}\Rightarrow x=-3.\sqrt{\frac{3}{5}};y=-4\sqrt{\frac{3}{5}}\)
Đặt \(\frac{x}{4}=\frac{y}{5}=k\left(k\ne0\right)\)
\(\Rightarrow\hept{\begin{cases}x=4k\\y=5k\end{cases}}\)
Mà \(xy=20\)\(\Leftrightarrow4k.5k=20\)
\(\Leftrightarrow20k^2=20\)
\(\Leftrightarrow k^2=1\)
\(\Leftrightarrow\orbr{\begin{cases}k=1\\k=-1\end{cases}}\)
+) Với \(k=1\Leftrightarrow\hept{\begin{cases}x=4\\y=5\end{cases}}\)
+) Với \(k=-1\Leftrightarrow\hept{\begin{cases}x=-4\\y=-5\end{cases}}\)
Vậy ...
\(\frac{x}{4}=\frac{y}{5}\Rightarrow\frac{x^2}{4^2}=\frac{x}{4}.\frac{x}{4}=\frac{x}{4}.\frac{y}{5}=\frac{xy}{20}=\frac{20}{20}=1\)
\(\Rightarrow x^2=4^2=16\Rightarrow x=\pm4\)
Với x=4 thì \(y=\frac{4}{4}.5=5\)
Với x=-4 thì \(y=\frac{-4}{4}.5=-5\)