Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
với x,y,z thuộc số hữu tì ta có
bn tự chép đề tại chỗ này nh a.
từ đề bài ,cộng vế theo vế ta có
x(x+y+z)+y(x+y+z)+z(x+y+z)=-5+9+5=9
suy ra (x+y+z)(x+y+z)=9 suy ra (x+y+z)^2=3^2 hay =(-3)^2
suy ra x+y+z=3 hay=-3
xét trường hợp 1 ta có x+y+z=3
suy ra x(x+y+z)=-5 suy ra x=-5/3
suy ra y=9/3=3
suy ra z=5/3
tương tự xét trường hợp thứ hai ta có x+y+z=-3
suy ra x=-5/-5=5/3
suy ra y=9/-3=-3
suy ra z=5/-3=-5/3
\(2a=3b\Rightarrow\dfrac{a}{3}=\dfrac{b}{2}\Rightarrow\dfrac{a}{21}=\dfrac{b}{14}\\ 5b=7c\Rightarrow\dfrac{b}{7}=\dfrac{c}{5}\Rightarrow\dfrac{b}{14}=\dfrac{c}{10}\\ \Rightarrow\dfrac{a}{21}=\dfrac{b}{14}=\dfrac{c}{10}\)
Áp dụng t/c dtsbn:
\(\dfrac{a}{21}=\dfrac{b}{14}=\dfrac{c}{10}=\dfrac{3a}{63}=\dfrac{7b}{98}=\dfrac{5c}{50}=\dfrac{3a-7b+5c}{63-98+50}=\dfrac{-30}{15}=-2\\ \Rightarrow\left\{{}\begin{matrix}a=-42\\b=-28\\c=-20\end{matrix}\right.\)
\(x:y:z=3:4:5\Rightarrow\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}\)
Đặt \(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}=k\Rightarrow x=3k;y=4k;z=5k\)
\(2x^2+2y^2-3z^2=-100\\ \Rightarrow18k^2+32k^2-75k^2=-100\\ \Rightarrow-25k^2=-100\Rightarrow k^2=4\Rightarrow\left[{}\begin{matrix}k=2\\k=-2\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=6;y=8;z=10\\x=-6;y=-8;z=-10\end{matrix}\right.\)
Ta có:x/2=y/4=z/6 =x-y+z/2-4+6=x-y+z=8/2-4+6=4=8/4
Ta thấy:8/4=2/1=2
Vì thế x=2x2=4
y=2x4=8
z=2x6=12
Vậy đáp số là:x=4;y=8;z=12
Nhớ k cho mình nha !Cảm ơn nhiều
Vì \(\frac{x}{2}=\frac{y}{4}=\frac{z}{6}\)và x-y+z=8
Đặt \(\frac{x}{2}=\frac{y}{4}=\frac{z}{6}=k\)
\(\Rightarrow\hept{\begin{cases}x=2k\\y=4k\\z=6k\end{cases}}\)
mà x+y+z=8 \(\Rightarrow\)2k-4k+6k=8
\(\Rightarrow\)4k=8
\(\Leftrightarrow\)k=2
Vậy \(\hept{\begin{cases}x=4\\y=8\\z=12\end{cases}}\)
Cộng theo từng vế các đẳng thức đã cho, ta được:
x.(x + y + z) + y(x + y + z) + z.(x+ y + z) = - 5 + 9 + 5
⇔ (x + y + z). (x + y + z ) = 9
Suy ra: (x + y + z)2 = 9 ⇒ x + y + z = ±3
Vì xy = x : y suy ra y^2 = 1 ---> y = 1 hoặc y = -1
+ Nếu y = 1 ---> x - 1 = x.1 (vô nghiệm nên tr/hợp này loại)
+ Nếu y = -1 ---> x + 1 = - x ---> 2x = -1 ---> x = -1/2 (nhận)
Vậy x = -1/2 ; y = -1.
l.anh êi , mở bài 21 trang 11 trong vở bài tập có bài này đấy
Ta có: (3x-5)2006 lớn hơn hoặc = 0 với mọi x
(y2-1)2008 lớn hơn hoặc = 0 vs moi y
(x-z)2100 lớn hơn hoặc = 0 vs mọi x, z
=> (3x-5)2006+(y2-1)2008+(x-z)2100 lớn hơn howacj = 0 vs mọi x
mà (3x-5)2006+(y2-1)2008+(x-z)2100=0
=> (3x-5)2006=0 ; (y2-1)2008=0 và (x-z)2100=0
+) xét (3x-5)2006=0
=>3x-5=0
=>3x=5
=>x=5/3
+) xét (y2-1)2008=0
=>y2-1=0
=>y2=1
=>y=-1 hoặc y=1
+) xét (x-z)2100=0
=>x-z=0
=>5/3-z=0
=>z=5/3
x+y=x;y=3.[x-y]
x+y=x.\(\frac{1}{y}\)=3[x-y]
-x-y=x.\(\frac{1}{y}\)=3.[x-y]
=x.\(\frac{1}{y}\)=3[x-y]+x-y
=x\(\frac{1}{y}\)=4 .[x-y]
=1/yx=4x-4y
=1/yx-4x=4y
=1=4y
y=1/4
Có: \(x+y=3\left(x-y\right)\)\(x+y=3x-3y\)\(2x=4y\)\(\frac{x}{y}=2\)\(x=2y\)
Thay x = 2y vào x + y, ta được: \(3y=\frac{x}{y}\)
Có: \(\hept{\begin{cases}\frac{x}{y}=3y\\\frac{x}{y}=2\end{cases}\Rightarrow3y=2\Rightarrow y=\frac{2}{3}}\)
\(\Rightarrow x=2.\frac{2}{3}=\frac{4}{3}\)
Vậy \(x=\frac{4}{3};y=\frac{2}{3}\)