Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(4x=5y\Rightarrow\frac{x}{5}=\frac{y}{4}\Rightarrow\left(\frac{x}{5}\right)^2=\left(\frac{y}{4}\right)^2=\frac{x^2}{25}=\frac{y^2}{16}\)
Áp dụng TC DTSBN ta có :
\(\frac{x^2}{25}=\frac{y^2}{16}=\frac{x^2-y^2}{25-16}=\frac{1}{9}\)
\(\Rightarrow\frac{x^2}{25}=\frac{1}{9}\Rightarrow x^2=\frac{25}{9}\Rightarrow x=\frac{-5}{3};\frac{5}{3}\)
\(\Rightarrow\frac{y^2}{16}=\frac{1}{9}\Rightarrow y^2=\frac{16}{9}\Rightarrow y=\frac{-4}{3};\frac{4}{3}\)
Ta có
4x=5y và x2-y2=1
Có \(\frac{x}{5}=\frac{y}{4}\)và x2-y2=1
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\frac{x}{5}=\frac{y}{4}=\frac{x^2-y^2}{5^2-4^2}=\frac{1}{9}\)
Suy ra: \(\frac{x^2}{5^2}=\frac{1}{9}\)=>\(x^2=\frac{1}{9}.25=\frac{25}{9}\)=>\(x=\frac{5}{3}or\frac{-5}{3}\)
Cách tìm y tương tự như vậy
Kq cuối cùng là \(x=\frac{5}{3}or\frac{-5}{3}\)\(y=\frac{4}{3}or\frac{-4}{3}\)
\(4x=5y\Rightarrow\dfrac{x}{5}=\dfrac{y}{4}\)
Đặt \(\dfrac{x}{5}=\dfrac{y}{4}=k\Rightarrow\left\{{}\begin{matrix}x=5k\\y=4k\\\end{matrix}\right.\)
Thay vào \(x^2-y^2=1\)
\(\Rightarrow\left(5k\right)^2-\left(4k\right)^2=1\)
\(\Leftrightarrow25k^2-16k^2=1\)
\(\Leftrightarrow9k^2=1\)
\(\Leftrightarrow k^2=\dfrac{1}{9}\)
\(\Leftrightarrow k=\pm\dfrac{1}{3}\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=5k=5.\dfrac{1}{3}=\dfrac{5}{3}\\y=4k=4.\dfrac{1}{3}=\dfrac{4}{3}\end{matrix}\right.\\\left\{{}\begin{matrix}x=5k=5.\left(-\dfrac{1}{3}\right)=-\dfrac{5}{3}\\y=4k=4.\left(-\dfrac{1}{3}\right)=-\dfrac{4}{3}\end{matrix}\right.\end{matrix}\right.\)
x+y=6-2
x+y=4
suy ra có 5 trường hợp
x=0,y=4
x=1,y=3
x=2,y=2
x=3,y=1
x=4,y=0
Ta có: \(\dfrac{x-1}{2}=\dfrac{y+1}{3}=\dfrac{z-3}{5}\)
nên \(\dfrac{2x-2}{4}=\dfrac{y+1}{3}=\dfrac{z-3}{5}\)
mà 2x+y-z=0
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{2x-2}{4}=\dfrac{y+1}{3}=\dfrac{z-3}{5}=\dfrac{2x+y-z-2+1+3}{4+3-5}=\dfrac{2}{2}=1\)
Do đó: x=3; y=2; z=8
6x - 14 / 13 = 5y + 9 / 11 => ( 6x - 14 ) . 11 = ( 5y + 9 ) . 13
=> 66x - 154 = 65y + 117
=> 66x - 65y = 154 + 117
=> 66x - 65y = 271
Ta có \(\frac{6x-14}{13}=\frac{5y+9}{11}\)
=> \(11\left(6x-14\right)=13\left(5y+9\right)\)
=> \(66x-154=65y+117\)
=> \(66x-65y=117+154\)
=> \(66x-65y=271\)(1)
và \(3x-2y=19\)(2)
Trừ (1) với (2), ta có:
\(63x-63y=252\)
=> \(63\left(x-y\right)=252\)
=> \(x-y=\frac{252}{63}\)
=> \(x-y=4\)
=> x = 4 + y (3)
Thế (3) vào (2), ta có:
\(3\left(4+y\right)-2y=19\)
=> \(12+3y-2y=19\)
=> \(12+y=19\)
=> \(y=7\)
=> \(x=4+7=11\)
Vậy \(\hept{\begin{cases}x=11\\y=7\end{cases}}\)thì thoả mãn điều kiện \(\hept{\begin{cases}\frac{6x-14}{13}=\frac{5y+9}{11}\\3x-2y=19\end{cases}}\).
`#3107.101107`
`4x = 5y => x/5 = y/4`
Đặt `x/5 = y/4 = k`
`=> x = 5k; y = 4k`
Ta có: `x^2 - y^2 = 1`
`=> (5k)^2 - (4k)^2 = 1`
`=> 25k^2 - 16k^2 = 1`
`=> 9k^2 = 1`
`=> k^2 = 1 \div 9`
`=> k^2 = 1/9`
`=> k^2 = (+-1/3)^2`
`=> k = +-1/3`
Với `k = 1/3`
`=> x = 1/3*5 = 5/3; y = 1/3*4 = 4/3`
Với `k = -1/3`
`=> x = -1/3*5 = -5/3; y = -1/3*4 = -4/3.`