Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) P(x) = \(2{x^3} + 5{x^2} - 4x + 3\) thay x = -2 vào đa thức ta có :
\(P(-2)= 2{(-2)^3} + 5{(-2)^2} - 4.(-2)+ 3 = 2.( - 8) + 5.4 - 4.( - 2) + 3 = 15\)
b) Q(y) =\(2{y^3} - {y^4} + 5{y^2} - y\) thay y = 3 vào đa thức ta có :
\(Q(3)=2{3^3} - {3^4} + 5{3^2} - 3 = 2.27 - 81 + 5.9 - 3 = 15\)
Bài 1:
b) ĐKXĐ: \(x\ne3\)
Ta có: \(\dfrac{3-x}{20}=\dfrac{-5}{x-3}\)
\(\Leftrightarrow\dfrac{x-3}{-20}=\dfrac{-5}{x-3}\)
\(\Leftrightarrow\left(x-3\right)^2=100\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=10\\x-3=-10\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=13\left(nhận\right)\\x=-7\left(nhận\right)\end{matrix}\right.\)
Vậy: \(x\in\left\{13;-7\right\}\)
cái này bạn áp dụng hằng đẳng thức đáng nhớ số 1
(x-y)^2+(x^3-y^2)^2+6xy=36+(y^2-x^3)^2
(x^2 + y^2 - 2xy) + (x^6 + y^4 - 2x^3*y^2) + 6xy = 36 + (y^4 + x^6 - 2x^3*y^2) (Vì nó bằng nên lược bớt)
x^2 + y^2 - 2xy + 6xy = 36
x^2 + y^2 + 4xy = 36
x^2 + y^2 + 2xy + 2xy = 36
(x + y)^2 + 2xy = 36
Bài 1:
Ta có: \(3x=2y\)
nên \(\dfrac{x}{2}=\dfrac{y}{3}\)
mà x+y=-15
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{x+y}{2+3}=\dfrac{-15}{5}=-3\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{x}{2}=-3\\\dfrac{y}{3}=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-6\\y=-9\end{matrix}\right.\)
Vậy: (x,y)=(-6;-9)
Bài 2:
a) Ta có: \(\dfrac{x}{4}=\dfrac{y}{3}=\dfrac{z}{5}\)
mà x+y-z=20
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{4}=\dfrac{y}{3}=\dfrac{z}{5}=\dfrac{x+y-z}{4+3-5}=\dfrac{20}{2}=10\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{x}{4}=10\\\dfrac{y}{3}=10\\\dfrac{z}{5}=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=40\\y=30\\z=50\end{matrix}\right.\)
Vậy: (x,y,z)=(40;30;50)