Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(\frac{x}{4}=\frac{y}{5}\) và x + y = 4
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{4}=\frac{y}{5}=\frac{x+y}{4+5}=\frac{4}{9}\)
=> \(\hept{\begin{cases}\frac{x}{4}=\frac{4}{9}\\\frac{y}{5}=\frac{4}{9}\end{cases}}\Rightarrow\hept{\begin{cases}9x=16\\9y=20\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{16}{9}\\y=\frac{20}{9}\end{cases}}\)
b, \(\frac{x}{6}=\frac{y}{3}\) và x - 2y = 5
Ta có : \(\frac{x}{6}=\frac{y}{3}\)=> \(\frac{x}{6}=\frac{2y}{6}\)
Áp dụng t/c dãy tỉ số bằng nhau ta có :
\(\frac{x}{6}=\frac{2y}{6}=\frac{x-2y}{6-6}=\frac{5}{0}\) vô lý
c, \(\frac{x}{3}=\frac{y}{7}\) và x - 5y = 4
Ta có : \(\frac{x}{3}=\frac{y}{7}\)=> \(\frac{x}{3}=\frac{5y}{35}\)
Áp dụng t/c dãy tỉ số bằng nhau ta có :
\(\frac{x}{3}=\frac{5y}{35}=\frac{x-5y}{3-35}=\frac{4}{-32}=\frac{-4}{32}=\frac{-1}{8}\)
=> \(\hept{\begin{cases}\frac{x}{3}=\frac{-1}{8}\\\frac{y}{7}=\frac{-1}{8}\end{cases}\Rightarrow}\hept{\begin{cases}8x=-3\\8y=-7\end{cases}}\Rightarrow\hept{\begin{cases}x=-\frac{3}{8}\\x=-\frac{7}{8}\end{cases}}\)
d, Tương tự áp dụng như bài a,c
a) Ta có : \(2x+5y=10\) (1)
\(\frac{x}{y}=34\Leftrightarrow x=34y\)
Thay \(x=34y\) vào (1), ta được :
\(68y+3y=10\)
\(\Leftrightarrow71y=10\)
\(\Leftrightarrow y=\frac{10}{71}\)
\(\Leftrightarrow x=\frac{340}{71}\)
Vậy \(\left(x;y\right)=\left(\frac{340}{71};\frac{10}{71}\right)\)
b) Ta có : \(\frac{2x}{3y}=-\frac{1}{3}\)\(\Leftrightarrow\frac{-1}{2x}=\frac{3}{3y}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có :
\(-\frac{1}{2x}=\frac{3}{3y}=\frac{-1+3}{2x+3y}=\frac{2}{7}\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x=-1:\frac{2}{7}=-\frac{7}{2}\Leftrightarrow x=-\frac{7}{4}\\3y=3:\frac{2}{7}=\frac{21}{2}\Leftrightarrow y=\frac{7}{2}\end{matrix}\right.\)
Vậy \(\left(x;y\right)=\left(-\frac{7}{4};\frac{7}{2}\right)\)
c) Ta có : \(\frac{x}{3}=\frac{y}{7}\)
\(\Leftrightarrow\frac{x^2}{9}=\frac{y^2}{49}=\frac{xy}{21}=\frac{84}{21}=4\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2=4.9=36\Leftrightarrow x=\pm6\\y^2=4.49=196\Leftrightarrow y=\pm14\end{matrix}\right.\)
Vậy \(\left(x;y\right)\in\left\{\left(6;14\right);\left(-6;-14\right)\right\}\)
\(c,\frac{x}{3}=\frac{y}{7}\) và \(x.y=84\)
Đặt x . y = k ( k \(\in\) N✳)
Có x . y = 84 nên 3k . 7k = 84
21k = 84
k = 4
\(\Rightarrow k=4\) hoặc \(k=-4\)
Với \(k=4\Rightarrow\left\{{}\begin{matrix}x=3.4=12\\y=7.4=28\end{matrix}\right.\)
Với \(k=-4\Rightarrow\left\{{}\begin{matrix}x=3.\left(-4\right)=-12\\y=7.\left(-4\right)=-28\end{matrix}\right.\)
Vậy x = 12 , y = 28
hoặc x = -12 , y = -28
a, \(\frac{x}{y}=34\Leftrightarrow\frac{x}{34}=\frac{y}{1}\Rightarrow\frac{2x}{68}=\frac{5y}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{2x}{68}=\frac{5y}{5}=\frac{2x+5y}{68+5}=\frac{10}{73}\)
\(\Rightarrow\left\{{}\begin{matrix}2x=\frac{680}{73}\\5y=\frac{50}{73}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\frac{340}{73}\\y=\frac{250}{73}\end{matrix}\right.\)
Mình chỉ hướng dẫn giải thôi nhá chứ nhiều bài quá
a) Đặt \(\frac{x}{5}=\frac{y}{7}=k\Rightarrow x=5k;y=7k\)
Thay x.y=315 => 5k.7k=315 <=> 35k2=315 => k2=9 => k=3
x=5.3=15 ; y=7.3=21
b) 5x=9y<=> \(\frac{x}{9}=\frac{y}{5}\)
Theo TCDTSBN ta có : \(\frac{x}{9}=\frac{y}{5}=\frac{2x+3y}{2.9+3.5}=\frac{-33}{33}=-1\)
x/9=-1=>x=-9 ; y/5=-1=>y=-5
các bài còn lại tương tự b
Ta có
<br class="Apple-interchange-newline"><div></div>2x3y =−13
=><br class="Apple-interchange-newline"><div></div>-2x1 =3y3
Áp dụng tính chất dãy Tỉ số bằng nhau ,ta có
-2x/1= 3y/3 = (-2x+3y)/( 1+3) = 7/4
=> x= -7/8, y=7/4
Ta có x/5 = y/3
=> x^2/25 =y^2/ 9
Áp dụng tính chất dãy tỉ số bằng nhau ta có
x^2 /25 = y^2/9 = (x^2 -y^2)/(25- 9)= 1/4
=> x = 5/2, y = 3/2 (x,y>0)
\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\)
=> \(\frac{2\left(x-1\right)}{4}=\frac{3\left(y-2\right)}{9}=\frac{z-3}{4}\)
=> \(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}=\frac{2x-2+3y-6-z+3}{4+9-4}=\frac{\left(2x+3y-z\right)-2-6+3}{9}=\frac{50-5}{9}=\frac{45}{9}\)= 5
=> x-1/2 = 5 => x-1=5 => x=6
y-2/3 = 5 => y-2 = 15 => y =17
z-3/4=5 => z-3=20 => z=23
b) Theo đề ta có:
\(\frac{2x}{5}=\frac{3y}{7}\)
=> \(\frac{2x}{30}=\frac{3y}{42}\)
Hay:\(\frac{x}{15}=\frac{y}{14}\) và x+y= 29
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{15}=\frac{y}{14}=\frac{x+y}{15+14}=\frac{29}{29}=1\)
=> \(\frac{x}{15}=1\)
\(\frac{y}{14}=1\)
=> x = 15
y = 14
bạn kiểm tra lại thử giúp mình nha! ^-^!
x/3=y/4
=>2x/6=5y/20 và 2x+5y=10
Áp dụng t/c dãy tỉ số bằng nhau ta có:
2x/6 = 5y/20=2x+5y/6+20=10/26=5/13
=>x=5/13 . 3=15/13
y=5/13 . 4=20/13
b)2x/5 = 3y/7=>3x/7,5=3y/7=>x/7,5=y/7 và x+y=29
Áp dụng t/c dãy tỉ số bằng nhau ta có:
x/7,5=y/7=x+y/7,5+7=29/14,5=2
=>x=2.7,5=15
y=2.7=14