K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 2 2020

ko vt lại đề 

(xyz-xy)-(yz-y)-(zx-x)+(z-1)=2019

=>xy(z-1)-y(z-1)-x(z-1)+(z-1)=2019

=> (z-1)(xy-y-x+1)=2019

=> (z-1)(z-1)(y-1)=2019

vì x>y>z>0 => (x-1) khác (y-1) khác (z-1)=> x-1>y-1>z-1

nên (z-1),(x-1)và (y-1) thuộc ước của 2019={ 1,3,673,2019}

(x-1)(y-1)(z-1)= 673.3.1=2019

=> x-1=673=>x=674

=>y-1=3=>y=4

=> z-1 =1=>z=2

Vậy x=674,y=4,z=2

25 tháng 11 2021

\(=\dfrac{xy\left(z-1\right)-y\left(z-1\right)-x\left(z-1\right)+\left(z-1\right)}{xy\left(z+1\right)+y\left(z+1\right)-x\left(z+1\right)-\left(z+1\right)}\\ =\dfrac{\left(z-1\right)\left(xy-y-x+1\right)}{\left(z+1\right)\left(xy+y-x-1\right)}=\dfrac{\left(z-1\right)\left(x-1\right)\left(y-1\right)}{\left(z+1\right)\left(x+1\right)\left(y-1\right)}=\dfrac{\left(z-1\right)\left(x-1\right)}{\left(z+1\right)\left(x+1\right)}\\ =\dfrac{\left(5003-1\right)\left(5001-1\right)}{\left(5003+1\right)\left(5001+1\right)}=\dfrac{5002\cdot5000}{5004\cdot5002}=\dfrac{5000}{5004}=\dfrac{1250}{1251}\)

13: 

xy(x+y)+yz(y+z)+xz(x+z)+2xyz 

= xy(x + y) + yz(y + z) + xyz + xz(x + z) + xyz 

= xy(x + y) + yz(y + z + x) + xz(x + z + y) 

= xy(x + y) + z(x + y + z)(y + x) 

= (x + y)(xy + zx + zy + z²) 

= (x + y)[x(y + z) + z(y + z)] 

= (x + y)(y + z)(z + x)

2 tháng 8 2020

a/ \(A=xy-4y-5x+20\)

\(=x\left(y-5\right)-4\left(y-5\right)\)

\(=\left(x-4\right)\left(y-5\right)\)

Thay \(x=14;y=5,5\) vào biểu thức A ta có :

\(A=\left(14-4\right)\left(5,5-5\right)\)

\(=10.0,5=5\)

Vậy...

b/ \(B=xyz-\left(xy+yz+zx\right)+x+y+z-1\)

\(=xyz-xy-yz-zx+x+y+z-1\)

\(=\left(xyz-xy\right)-\left(yz-y\right)-\left(zx-x\right)+\left(z-1\right)\)

\(=xy\left(z-1\right)-y\left(z-1\right)-x\left(z-1\right)+\left(z-1\right)\)

\(=\left(z-1\right)\left(xy-y-x+1\right)\)

\(=\left(z-1\right)\left[y\left(x-1\right)-\left(x-1\right)\right]\)

\(=\left(x-1\right)\left(y-1\right)\left(z-1\right)\)

Thay \(x=9,y=10,z=11\) vào biểu thức B ta có :

\(B=\left(9-1\right)\left(10-1\right)\left(11-1\right)\)

\(=720\)

Vậy....

c/ \(C=x^3-x^2y-xy^2+y^3\)

\(=x^2\left(x-y\right)-y^2\left(x-y\right)\)

\(=\left(x-y\right)^2\left(x+y\right)\)

Thay \(x=5,75,y=4,25\) vào biểu thức C ta có :

\(C=\left(5,75-5,25\right)^2\left(5,75+5,25\right)=11,25\)

Vậy..