Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\dfrac{x}{3}-\dfrac{4}{y}=\dfrac{1}{5}\)
\(\dfrac{4}{y}\) = \(\dfrac{x}{3}-\dfrac{1}{5}\)
\(\dfrac{4}{y}\) = \(\dfrac{5x-3}{15}\)
=> 4.15 = y.(5x-3)
60 = y.(5x-3)
Ta có bảng
5x-3 | 1 | 60 | 2 | 30 | 3 | 20 | 4 | 15 | 5 | 12 | 6 | 10 |
y | 60 | 1 | 30 | 2 | 20 | 3 | 15 | 4 | 12 | 5 | 10 | 6 |
x | 4/5 | 63/5 | 1 | 33/5 | 6/5 | 23/5 | 7/5 | 18/5 | 8/5 | 3 | 9/5 | 13/5 |
L | L | TM | L | L | L | L | L | L | TM | L | L |
Vậy y=30 và x=1 ; y=5 và x=3
a) \(\dfrac{x}{5}=\dfrac{6}{-10}\)
\(\Rightarrow\) (-10).x=5.6
\(\Leftrightarrow\) (-10).x=30
\(\Leftrightarrow x=30:\left(-10\right)\)
\(\Leftrightarrow\) x=(-3)
Vậy......................
b) \(\dfrac{x}{3}=\dfrac{4}{y}\)
\(\Rightarrow xy=3.4=12\)
Ta có: xy=12=1.12=12.1=2.6=6.2=3.4=4.3=(-1).(-12)=......( bạn tự ghi nốt)
\(\Rightarrow\)(x;y)=(1;12) (12;1) (2;6) (6;2) (3;4) (4;3) (-1;-12) (-12;-1) (-2;-6) (-6;-2) (-3;-4) (-4;-3)
Vậy.....................................
a: x/5=6/-10
=>x/5=-3/5
=>x=-3
b: =>xy=12
=>\(\left(x,y\right)\in\left\{\left(1;12\right);\left(12;1\right);\left(-1;-12\right);\left(-12;-1\right);\left(2;6\right);\left(6;2\right);\left(-2;-6\right);\left(-6;-2\right);\left(3;4\right);\left(4;3\right);\left(-3;-4\right);\left(-4;-3\right)\right\}\)
c: =>x/2=y/7=k
=>x=2k; y=7k
=>\(\left(x,y\right)\in\left\{\left(2k;7k\right);k\in Z\right\}\)
d: 2/x=x/8
=>x^2=16
=>x=4 hoặc x=-4
bài 3:
a, đặt \(\dfrac{x}{12}=\dfrac{y}{9}=\dfrac{z}{5}=k\)
=>x=12k,y=9k,z=5k
ta có: ayz=20=> 12k.9k.5k=20
=> (12.9.5)k^3=20
=>540.k^3=20
=>k^3=20/540=1/27
=>k=1/3
=>x=12.1/3=4
y=9.1/3=3
z=5.1/3=5/3
vậy x=4,y=3,z=5/3
b,ta có: \(\dfrac{x}{5}=\dfrac{y}{7}=\dfrac{z}{3}=\dfrac{x^2}{25}=\dfrac{y^2}{49}=\dfrac{z^2}{9}\)
A/D tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{5}=\dfrac{y}{7}=\dfrac{z}{3}=\dfrac{x^2}{25}=\dfrac{y^2}{49}=\dfrac{z^2}{9}=\dfrac{x^2+y^2-z^2}{25+49-9}=\dfrac{585}{65}=9\)
=>x=5.9=45
y=7.9=63
z=3*9=27
vậy x=45,y=63,z=27
a) x=\(\dfrac{5.6}{-10}=-3.\)
b) y=\(\dfrac{3.77}{-33}=-7.\)
b/ Có \(\dfrac{x-7}{y-6}=\dfrac{7}{6}\)
nên \(6.\left(x-7\right)=7.\left(y-6\right)\)
\(\rightarrow\) \(6.x-6.7=7.y-7.6\)
\(\Rightarrow\) \(6x=7y\). Mà \(x-y=-4\) nên \(6x-6y=-24\)
\(\rightarrow\) \(7y-6x=-24\)
\(\rightarrow1y=-24\)
Và \(x-y=-4\) \(\Rightarrow\) \(x=\left(-4\right)+y\) \(=\left(-4\right)+\left(-24\right)\)\(=-28\)
Vậy \(x=-28\) \(;\) \(y=-24\)
a) x.21=6.7
x.21=42
x=42:21
x = 2
b) y . 20 = -5.28
y.20 = -140
y = (-140) : 20
y = -7
a)=>x*21=7*6
=>x*21=42
=>x=42/21
x=2
b)=>y*20=(-5)*28
=>y*20=-140
=>y=-140/20
y=-7
a) Ta có: \(\dfrac{4}{x}+\dfrac{y}{3}=\dfrac{5}{6}\)
\(\Rightarrow\dfrac{4}{x}=\dfrac{5}{6}-\dfrac{y}{3}\)
\(\Rightarrow\dfrac{4}{x}=\dfrac{5-2y}{6}\)
\(\Rightarrow\left(5-2y\right)x=24\)
Vì \(x,y\in Z\Rightarrow\left[{}\begin{matrix}5-2y\in Z\\x\in Z\end{matrix}\right.\)
\(\Rightarrow5-2y\inƯ\left(24\right);x\inƯ\left(24\right)\)
Tự lập bảng xét các giá trị của \(x,y\) nhé.
b) Lại có: \(\dfrac{5}{x}-\dfrac{y}{3}=\dfrac{1}{6}\)
\(\Rightarrow\dfrac{5}{x}=\dfrac{1}{6}+\dfrac{y}{3}\)
\(\Rightarrow\dfrac{5}{x}=\dfrac{1+2y}{6}\)
\(\Rightarrow\left(1+2y\right)x=30\)
Lí luận rồi lập bảng như câu \(a\)).
c) \(\dfrac{x}{6}-\dfrac{2}{y}=\dfrac{1}{30}\)
\(\Rightarrow\dfrac{2}{y}=\dfrac{x}{6}-\dfrac{1}{30}\)
\(\Rightarrow\dfrac{2}{y}=\dfrac{5x-1}{30}\)
\(\Rightarrow\left(5x-1\right)y=60\)
\(......Tương\) \(tự\) \(như\) \(câu\) \(a\))\(b\)).
=>(12-xy)/3x=5/6
=>6(12-xy)=15x
=>(12-xy)=5/2x
=>24-2xy=5x
=>5x+2xy=24
=>x(2y+5)=24
=>(x;2y+5) thuộc {(1;24); (2;12); (3;8); (4;6); (6;4); (8;3); (12;2); (24;1)}
mà x,y là các số tự nhiên
nên \(\left(x,y\right)\in\varnothing\)