K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 3 2021

Với: y=0 thì: \(-x^2+13x=-24\text{ nên: }x^2-13x-24=0\text{ thấy ngay phương trình này ko có nghiệm nguyên}\)

\(\text{Nếu: }y>0\text{ thì: }x^2-13x=23+11^y\text{ do đó: }\left(x-1\right)^2-11x=24+11^y\text{ do đó: }\left(x-1\right)^2\text{ chia 11 dư 2}\)

THấy ngay 1 số chia 11 dư 0;+-1 ; +-2; +-3;....;+-5 mà: 0;1;4;9;16;25 không có số nào chia 11 dư 2 nên loại nên phương trình vô nghiệm

AH
Akai Haruma
Giáo viên
27 tháng 2 2021

Lời giải:

PT $\Leftrightarrow 11^y=x^2-13x-23$

Nếu $x\equiv 0\pmod 3$ thì:

$x^2-13x-23\equiv -23\equiv 1\pmod 3$

Nếu $x\equiv 1\pmod 3$ thì:

$x^2-13x-23\equiv 1-13-23\equiv 1\pmod 3$

Nếu $x\equiv 2\pmod 3$ thì:

$x^2-13x-23\equiv 1-13.2-23\equiv 0\pmod 3$

Do đó $11^y\equiv 0\pmod 3$ (vô lý) hoặc $11^y\equiv 1\pmod 3$

$\Rightarrow (-1)^y\equiv 1\pmod 3$

$\Rightarrow y$ chẵn. Đặt $y=2t$

$11^{2t}-x^2+13x+23=0$

$(2.11^{t})^2-(2x-13)^2=-261$

$(2.11^t-2x-13)(2.11^t+2x+13)=-261$

Đến đây là dạng phương trình tích cơ bản. Bạn có thể dễ dàng giải.