Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) 3n ⋮ 2n - 5
=> 2(3n) - 3(2n - 5) ⋮ 2n - 5
=> 6n - 6n + 15 ⋮ 2n - 5
=> 15 ⋮ 2n - 5
=> 2n-5 ϵ Ư(15)
Ư(15) = {1;-1;3;-3;5;-5;15;-15}
=> n={3;2;4 ;1;5;0;10;-5
a) 7 chia hết cho x+1 => x+1={1;7} => x={0;6}
b) 12 chia hết cho x-4 => x-4={1; 3, 4; 6; 12} => x={5;7;8;10;16}
c) \(\frac{11-x}{x}=\frac{11}{x}-1\) => 11 chia hết cho x và x\(\le\)11 => x={1;11}
\(a,\)\(x+80⋮x+3\)
\(\Rightarrow\)\(\left(x+3\right)+77⋮x+3\)
Vì \(x+3⋮x+3\)
nên \(77⋮x+3\)
\(\Rightarrow\)\(x+3\inƯ\left(77\right)\)
\(\Rightarrow\)\(x+3\in\left\{1;-1;7;-7;11;-11;77;-77\right\}\)
\(\Rightarrow\)\(x\in\left\{-2;-4;4;-10;8;-14;74;-80\right\}\)
mà \(x\in N\)nên \(x\in\left\{4;8;74\right\}\)
\(b,\)\(2x+65⋮x+1\)
\(\Rightarrow\)\(2\left(x+1\right)+63⋮x+1\)
Vì \(x+1⋮x+1\)
nên \(2\left(x+1\right)⋮x+1\)
Do đó, \(63⋮x+1\)
\(\Rightarrow\)\(x+1\inƯ\left(63\right)\)
\(\Rightarrow\)\(x+1\in\left\{1;-1;3;-3;7;-7;9;-9;21;-21;63;-63\right\}\)
\(\Rightarrow\)\(x\in\left\{0;-2;2;-4;6;-8;8;-10;20;-22;62;-64\right\}\)
mà \(x\in N\)nên \(x\in\left\{0;2;6;8;20;62\right\}\)
ta co : (2n+1) chia het cho (2n+1) (1)
=> 2(2n+1) chia het cho (2n+1) hay (4n-2) chia het cho (2n+1)
Ma (4n-5) chia het cho (2n-1) (2)
tu (1) va (2) => (4n-2)-(4n-2) chia het cho (2n-1)
=>3chia het cho (2n+1) hay (2n+1) thuoc U(3) ma U(3) = {1;3}
Neu 2n+1=-3=>n=-2
--- 2n+1=-1=>n=-1
--- 2n+1=1=>n=0
--- 2n+1=3=>n=1
vay n={-2;-1;0;1}
dua vao cach tren ma lam
Bạn có thể tham khảo cách của mình:
Do vai trò bình đẳng của x,y nên ta có thể giả sử x>= y
-TH x=y:
x+1 chia hết cho y
<=> y+1 chia hết cho y
=> y thuộc ước của 1. Mà y thuộc N nên y=1. Do đó ta có x=1 (vì x=y)
Ta có cặp so (x;y)=(1;1)
-TH x>y:
Giả sử x-y=k (k thuộc N* vì x,y là số tự nhiên, x>y). Suy ra y=x-k
Thay vào ta có: y+1 chia hết cho x
<=> x-k+1 chia hết cho x
Do x>k nên x-k+1 > 0, x là số tự nhiên, x-k+1 chia hết cho x
<=> 1-k =0 hoặc >0
+Nếu 1-k=0 thì k=1
Thay vào ta có: x+1 chia hết cho y
<=>1+y+1 chia hết cho y <=> y + 2 chia hết cho y. Suy ra y thuộc ước của 2
=> y={1;2}. Vậy x={2;3} tương ứng.
Ta có cặp số x;y=(1;2);(2;3)
+Nếu 1-k>0:
Do k thuộc N* nên 1-k>0 là vô lý
Kết luận: Các cặp số (x;y) phải tìm: (1;1);(1;2);(2;1);(2;3);(3;2)
Vì vai trò của x, y bình đẳng nên có thể giả sử x≤yx≤y.
- Nếu x = 1 thì x+1=2⋮yx+1=2⋮y ⇒y=1⇒y=1 hoặc 2 ⇒(x,y)=(1,1),(1,2)⇒(x,y)=(1,1),(1,2).
- Nếu x≥2x≥2 thì 2≤x≤y2≤x≤y
Có ⎧⎨⎩x+1⋮yy+1⋮x{x+1⋮yy+1⋮x
⇒(x+1)(y+1)=(xy+x+y+1)⋮xy⇒(x+1)(y+1)=(xy+x+y+1)⋮xy ⇒(x+y+1)⋮xy⇒(x+y+1)⋮xy
⇒x+y+1xy=1x+1y+1xy⇒x+y+1xy=1x+1y+1xy là số nguyên dương.
Mà 2≤x≤y2≤x≤y nên 1x+1y+1xy≤12+12+14=541x+1y+1xy≤12+12+14=54
Từ đó suy ra 1x+1y+1xy=11x+1y+1xy=1 (1)
⇒1=1x+1y+1xy≤1x+1x+12x=52x⇒1=1x+1y+1xy≤1x+1x+12x=52x ⇒2x≤5⇒2x≤5 ⇒⇒ x = 2
Thay vào (1) ta có 12+1y+12y=112+1y+12y=1 ⇒y=3⇒y=3
Vậy các cặp số (x, y) phải tìm là (1, 1), (1, 2), (2, 1), (2, 3), (3, 2).
x+11 = x +1 +10 chia hết cho x+1
=> 10 chia hết cho x+1
=> x +1 thuộc Ư(10) ={1;2;5;10}
=> x thuộc {0;1;4;9}