Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:\(x\left(x^2+x+1\right)=4y\left(y-1\right)\) (*)
\(\Leftrightarrow x^3+x^2+x+1=4y^2-4y+1\)
\(\Leftrightarrow\left(x^2+1\right)\left(x+1\right)=\left(2y-1\right)^2\) \(\left(1\right)\)
Gọi \(d\inƯC\left(x+1;x^2+1\right)\)với \(d\in Z\)
\(\Rightarrow\hept{\begin{cases}x+1⋮d\\x^2+1⋮d\end{cases}\Rightarrow x^2+1-x\left(x+1\right)⋮d}\)
\(\Rightarrow1-x⋮d\)
\(\Rightarrow1-x+x+1⋮d\)
\(\Rightarrow2⋮d\)
\(\Rightarrow d\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
Mà \(\left(2y-1\right)^2\)là số chính phương lẻ nên x+1 và x2+1 cũng là số lẻ
\(\Rightarrow d=\pm1\)
\(\Rightarrow x+1\)và \(x^2+1\)nguyên tố cùng nhau
Do đó để phương trình có nghiệm thì x+1 và x2+1 cũng là số chình phương
Giả sử: + \(x^2+1=m^2\)
\(\Rightarrow m^2-x^2=1\)
\(\Rightarrow x=0\)(bạn tự tính)
+\(x+1=n^2\)
\(\Rightarrow x=0\)(bạn tự tính)
Thay x=0 vào phương trình (*)=> y=-1;0
Vậy.......
Đặt \(2377-9y^2-6y=x^2\Leftrightarrow\left(3y+1\right)^2=2378-x^2\)
\(\Rightarrow\left(3y+1\right)^2\le2378< 2401=49^2\)
Từ đó suy ra được \(-49\le3y+1\le49\Leftrightarrow-16\le y\le16\)
Vậy y thuộc khoảng trên. Bạn tự liệt kê ra nhé ^^
\(\hept{\begin{cases}3x-y=2m+3\\x+2y=3m+1\end{cases}}\Leftrightarrow\hept{\begin{cases}6x-2y=4m+6\\x+2y=3m+1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=m+1\\y=m\end{cases}}\)khi đó: \(^{x^2+y^2=5\Leftrightarrow2m^2+2m+1=5\Leftrightarrow2m^2+2m-4=0\Leftrightarrow\orbr{\begin{cases}m=1\\m=-2\end{cases}}}\)
a) có nghiệm => \(\Delta=16-4\left(m+1\right)=12-4m\ge0\Leftrightarrow m\le3\)
áp dụng hệ thức vi ét ta có: x1+x2=4; x1.x2=m+1
b) \(x1^2+x2^2=10\Leftrightarrow\left(x1+x2\right)^2-2x1x2=10\Leftrightarrow16-2\left(m+1\right)=10\Leftrightarrow m=2\)(t/m đk)
c) \(x1^3+x2^3=34\Leftrightarrow\left(x1+x2\right)^3-3x1.x2\left(x1+x2\right)=34\Leftrightarrow64-12\left(m+1\right)=34\Leftrightarrow m=\frac{3}{2}\)(t/m đk)
a. vs m=-1 ,thay vào pt(1) ,ta đc :
x^2 -(-1+2)x +2.(-1) =0
<=>x^2 -x-2 =0
Có : đenta = (-1)^2 -4.(-2) =9 >0
=> căn đenta =căn 9 =3
=> X1 =2 ; X2=-1
Vậy pt (1) có tập nghiệm S={-1;2}
a/ Thay m=-1 vào phương trình (1) ta được:
\(x^2-x-2=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)
Vậy khi m=-1 thì phương trình (1) có \(S=\left\{2;-1\right\}\)
b/ Xét phương trình (1) có
\(\Delta=\left(m+2\right)^2-4.2m\)
= \(m^2-4m+4=\left(m-2\right)^2\)
Ta có: \(\left(m-2\right)^2\ge0\) với mọi m
\(\Leftrightarrow\Delta\ge0\) với mọi m
\(\Rightarrow\) Phương trình (1) có 2 nghiệm với mọi m
Áp dụng hệ thức Vi-ét ta có:
\(\left\{{}\begin{matrix}x_1+x_2=m+2\\x_1.x_2=2m\end{matrix}\right.\)
Theo đề bài ta có:
\(\left(x_1+x_2\right)^2-x_1x_2\le5\)
\(\Leftrightarrow\left(m+2\right)^2-2m\le5\)
\(\Leftrightarrow m^2+2m-1\le0\)
\(\Leftrightarrow\left(m+1-\sqrt{2}\right)\left(m+1+\sqrt{2}\right)\le0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}m+1-\sqrt{2}\ge0\\m+1+\sqrt{2}\le0\end{matrix}\right.\\\left\{{}\begin{matrix}m+1-\sqrt{2}\le0\\m+1+\sqrt{2}\ge0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}m\ge-1+\sqrt{2}\\m\le-1-\sqrt{2}\end{matrix}\right.\\\left\{{}\begin{matrix}m\le-1+\sqrt{2}\\m\ge-1-\sqrt{2}\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}-1+\sqrt{2}\le m\le-1-\sqrt{2}\left(ktm\right)\\-1-\sqrt{2}\le m\le-1+\sqrt{2}\left(tm\right)\end{matrix}\right.\)
vậy để phương trình (1) có 2 nghiệm \(x_1,x_2\) thỏa mãn \(\left(x_1+x_2\right)^2-x_1x_2\le5\) thì \(-1-\sqrt{2}\le m\le-1+\sqrt{2}\)
vì x>= 2y
=> P=\(\frac{2\cdot x^2+y^2-2\cdot x\cdot y}{xy}>=\frac{2\cdot\left(2y\right)^2+y^2-2\cdot\left(2y\right)\cdot y}{2y\cdot y}\)=\(\frac{8\cdot y^2+y^2-4y^2}{2y^2}=\frac{5y^2}{2y^2}=\frac{5}{2}\)
Vậy min P=5/2
Dấu = khi x=2y
\(x^2\) có chữ số tận cùng có thể là : 0;1;4;6;9
\(2y^2\)có chữ số tận cùng có thể là : 0 ;2;8
Vậy \(x^2+2y^2\)có chữ số tận cùng 7 => \(x^2\)có chữ số tận cùng là 9 và \(2y^2\)có chữ số tận cùng là 8 nên y2 có tận cùng là 4
=> y có tận cùng là 2 hoặc 8
\(2y^2\)< 2377 => \(y\)< 35
=> y \(\in\){2;8;12;18;22;28;32}
Thay y lần lượt các giá trị trên vào đề bài để tìm x .
Bạn làm tiếp nha.
cho day so Un duoc xac dinh boi U1=2,U2=1,Un=2=nUn+1-3Un+n2-2.tinh U15 va tinh tong cua 16 so hang dau tien cua day