Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
để \(\frac{3n+5}{n+1}\)là phân số thì 3n+5\(⋮n+1\)
\(\Rightarrow3n+5=3\left(n+1\right)+2⋮n+1\)
mà\(3\left(n+1\right)⋮n+1\Rightarrow2⋮n+1\Rightarrow n+1\inƯ\left(2\right)\)
=>\(n+1\in\left\{-1;-2;1;2\right\}\)
n+1 | -1 | -2 | 1 | 2 |
n | -2 | -3 | 0 | 1 |
kết luận | loại | loại | thỏa mãn | thỏa mãn |
vậy...
Ta có : \(\frac{5n+7}{n-3}=\frac{5}{3}\)
\(\Leftrightarrow\left(5n+7\right)3=5\left(n-3\right)\)
\(\Leftrightarrow15n+21=5n-15\)
\(\Leftrightarrow15n-5x=-15-21\)
\(\Leftrightarrow10n=-36\)
\(\Leftrightarrow n=-\frac{18}{5}\)
\(b,A\inℕ\Rightarrow5n+7⋮n-3\)
\(\Rightarrow5n-15+22⋮n-3\)
\(\Rightarrow5(n-3)+22⋮n-3\)
\(\Rightarrow22⋮n-3\)
\(\Rightarrow n-3\inƯ(22)=[\pm1,\pm2,\pm11,\pm22]\)
bạn tự vẽ bảng
a) *) \(\frac{n-1}{3-2n}\)
Gọi d là ƯCLN (n-1;3-2n) (d\(\inℕ\))
\(\Rightarrow\hept{\begin{cases}n-1⋮d\\3-2n⋮d\end{cases}\Rightarrow\hept{\begin{cases}2n-2⋮d\\3-2n⋮d\end{cases}\Leftrightarrow}\left(2n-2\right)+\left(3-2n\right)⋮d}\)
\(\Leftrightarrow1⋮d\left(d\inℕ\right)\Rightarrow d=1\)
=> ƯCLN (n-1;3-2n)=1
=> \(\frac{n-1}{3-2n}\)tối giản với n là số tự nhiên
*) \(\frac{3n+7}{5n+12}\)
Gọi d là ƯCLN (3n+7;5n+12) \(\left(d\inℕ\right)\)
\(\Rightarrow\hept{\begin{cases}3n+7⋮d\\5n+12⋮d\end{cases}\Rightarrow\hept{\begin{cases}15n+35⋮d\\15n+36⋮d\end{cases}\Leftrightarrow}\left(15n+36\right)-\left(15n+35\right)⋮d}\)
\(\Leftrightarrow1⋮d\left(d\inℕ\right)\)
\(\Rightarrow d=1\)
=> ƯCLN (3n+7;5n+12)=1
=> \(\frac{3n+7}{5n+12}\) tối giản với n là số tự nhiên
b) *) \(\frac{2n+5}{n-1}\left(n\ne1\right)\)
\(=\frac{2\left(n-1\right)+7}{n-1}=2+\frac{7}{n-1}\)
Để \(\frac{2n+5}{n-1}\) nhận giá trị nguyên => \(2+\frac{7}{n-1}\) nhận giá trị nguyên
2 nguyên => \(\frac{7}{n-1}\)nguyên
=> 7 chia hết cho n-1
n nguyên => n-1 nguyên => n-1\(\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)
Ta có bảng
n-1 | -7 | -1 | 1 | 7 |
n | -6 | 0 | 2 | 8 |
vậy n={-6;0;2;8} thì \(\frac{2n+5}{n-1}\) nhận giá trị nguyên
- Để \(\frac{12}{3n-1}\)là số nguyên \(\Rightarrow\)\(12⋮ 3n-1\)
\(\Rightarrow\)\(3n-1\inƯ\left(12\right)\in\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right\}\)
- Ta có bảng giá trị:
\(3n-1\) | \(-1\) | \(1\) | \(-2\) | \(2\) | \(-3\) | \(3\) | \(-4\) | \(4\) | \(-6\) | \(6\) | \(-12\) | \(12\) |
\(n\) | \(0\) | \(\frac{2}{3}\) | \(-\frac{1}{3}\) | \(1\) | \(-\frac{2}{3}\) | \(\frac{4}{3}\) | \(-1\) | \(\frac{5}{3}\) | \(-\frac{5}{3}\) | \(\frac{7}{3}\) | \(-\frac{11}{3}\) | \(\frac{13}{3}\) |
\(\left(TM\right)\) | \(\left(L\right)\) | \(\left(L\right)\) | \(\left(TM\right)\) | \(\left(L\right)\) | \(\left(L\right)\) | \(\left(TM\right)\) | \(\left(L\right)\) | \(\left(L\right)\) | \(\left(L\right)\) | \(\left(L\right)\) | \(\left(L\right)\) |
Vậy \(n\in\left\{-1; 0; 1\right\}\)
!!@@# ^_^ Chúc bạn hok tốt ^_^#@@!!
\(\frac{2n+7}{n-1}=2+\frac{9}{n-1}\)
Để \(2+\frac{9}{n-1}\)có giá trị là số tự nhiên thì n-1 là ước của 9 và ước tự nhiên
=> Ư(9)={1;3;9}
Với n-1=1=> n=2 (TM)
n-1=3=> n=4 (TM)
n-1=9=> n=10 TM)
Vậy n ={2;4;10} để \(\frac{2n+7}{n-1}\)có giá trị là số tự nhiên