Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình sẽ tách ra làm từng ý, bạn nhớ k cho mình nhé!
a) Gọi d là ƯCLN ( 2n + 3; 4n + 1 )
Ta có: 2n + 3 chia hết cho d
=> 2 ( 2n + 3 ) chia hết cho d
=> 4n + 6 chia hết cho d
Mà: 4n + 1 chia hết cho d
=> ( 4n + 6 ) - ( 4n + 1 ) chia hết cho d
=> 5 chia hết cho d
=> d thuộc Ư ( 5 )
Giả sử phân số không tối giản:
=> 2n + 3 chia hết cho 5
=> 2n + 3 + 5 chia hết cho 5
=> 2n + 8 chia hết cho 5
=> 2 ( n + 4 ) chia hết cho 5
Vì ƯCLN ( 2; 5 ) = 1
=> n + 4 chia hết cho 5
=> n + 4 = 5k ( k thuộc N* )
=> n = 5k - 4
Vậy với n khác 5k - 4 ( k thuộc N* ) thì phân số bài cho sẽ tối giản.
b) Gọi d = ƯCLN ( 3n + 2; 7n + 1 )
Ta có: 3n + 2 chia hết cho d => 7 ( 3n + 2 ) chia hết cho d => 21n + 14 chia hết cho d ( 1 )
7n + 1 chia hết cho d => 3 ( 7n + 1 ) chia hết cho d => 21n + 3 chia hết cho d ( 2 )
Có: ( 1 ) chia hết cho d; ( 2 ) chia hết cho d
=> ( 1 ) - ( 2 ) chia hết cho d
=> 11 chia hết cho d
=> d thuộc Ư ( 11 )
Giả sử phân số không tối giản:
=> 7n + 1 chia hết cho 11
=> 7n + 1+ 55 chia hết cho 11
=> 7n + 56 chia hết cho 11
=> 7 ( n + 8 ) chia hết cho 11
Vì ƯCLN ( 7; 11 ) = 1
=> n + 8 chia hết cho 11
=> n + 8 = 11k ( k thuộc N* )
=> n = 11k - 8
Vậy với n khác 11k - 8 ( k thuộc N* ) thì phân số bài cho sẽ tối giản.
Mình làm cho bạn 2 câu, câu còn lại tương tự, bạn tự làm ha! ^v^
Đặt d là ước nguyên tố của 2n - 1 và 9n + 4
=> 2n - 1 chia hết cho d ; 9n + 4 chia hết cho d
2n - 1 chia hết cho d => 9( 2n - 1 ) chia hết cho d => 18n - 9 chia hết cho d
9n + 4 chia hết cho d => 2( 9n + 4 ) chia hết cho d => 18n + 8 chia hết cho d
=>( 18n + 8 ) - ( 18n - 9 ) chia hết cho d
=>18n + 8 - 18n + 9 chia hết cho d
=> 17 chia hết cho d => d thuộc ước của 17 mà ước của 17 là 1;17
Để \(\frac{6n+8}{2n-1}\)tối giản thì \(\frac{11}{2n-1}\)tối giản \(\Leftrightarrow\)ƯC(11,2n-1)=1,-1
\(\Rightarrow\)2n-1 không chia hết 5\(\Rightarrow\)2n-1\(\ne\)11k(k\(\in\)Z, k\(\ne\)0)
\(\Rightarrow\)n\(\ne\)11k+1:2
\(M=\frac{5n+185+2n+1+n+7}{4n+3}=\frac{8n+6+187}{4n+3}=2+\frac{187}{4n+3}\)
n là số tự nhiên thì (4n+3)>3
Để M là 1 số tự nhiên thì 187 phải chia hết cho (4n+3) hay (4n+3) là ước nguyên dương lơn hơn 3 của 187 là: 11;17;187.
- Nếu 4n+3=11 => n=2
- Nếu 4n+3=17 => n=7/2 - Loại vì không thuộc N
- Nếu 4n+3 = 187 => n=46
Vậy, với n = 2 hoặc n = 46 thì M là số tự nhiên.
các phân số trên đưa về dạng : k/(n + k + 2) đặt là phân số (1)
với k= 7, 8, ..., 31
Muốn (1) tối giản <=> tử k và mẫu (n+k+2) không có ước chung > 1 khi k chạy từ 7, 8, ... , 31
Muốn vậy thì: n = 21