Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét 2 trường hợp :
+ Nếu a > 0 => (2008a + 3b + 1)(2008a + 2008a + b) > 225 (Không thỏa mãn -> Loại)
+ Nếu a = 0 => (3b + 1)(1 + b) = 75.3 = 25.9 = 45.5 = 225.1 = 15.15
Do 3b + 1 không chia hết cho 3 và 3b + 1 lớn hơn b + 1 nên 3b + 1 = 25
<=> 1 + b = 9 <=> b = 8
Vậy a = 0 ; b = 8
Theo đề bài 2008a + 3b + 1 và 2008a + 2008a + b là 2 số lẻ.
Nếu a 0 2008a + 2008a là số chẵn để 2008a + 2008a + b lẻ b lẻ
Nếu b lẻ 3b + 1 chẵn do đó 2008a + 3b + 1 chẵn (không thoả mãn)
Vậy a = 0
Với a = 0 (3b + 1)(b + 1) = 225
Vì b N (3b + 1)(b + 1) = 3.75 = 5. 45 = 9.25
3b + 1 không chia hết cho 3 và 3b + 1 > b + 1
Vậy a = 0 ; b = 8.
**** NHE
Bạn tham khảo tại đây nhé: Câu hỏi của _ Yuki _ Dễ thương _ - Toán lớp 7 | Học trực tuyến.
Chúc bạn học tốt!
Xét \(\left(2008a+3b+1\right)\left(2008^a+b\right)=225\)có \(225\) là số lẻ nên \(2008^a+3b+1\) và \(2008^a+b\) phải cùng là số lẻ
\(+\)Nếu \(a\ne0\) thì \(2008^a+b\) nhận giá trị là một số chẵn. Như vậy, để giá trị của \(2008^a+b\) lẻ thì \(b\)phải là một số lẻ.
Suy ra \(3b\) nhận giá trị lẻ. Từ đây, ta dễ dàng chứng minh được \(2008^a+3b+1\)nhận giá trị chẵn (vô lí)
\(+\)Nếu \(a=0\) thì \(\left(2008.0+3b+1\right)\left(2008^0+b\right)=225\Leftrightarrow\left(3b+1\right)\left(b+1\right)=225\)
\(\Leftrightarrow\left(3b+1\right)\left(b+1\right)=225.1=75.3=45.5=25.9=15.15\)
Vì \(a;b\in N\) nên \(3b+1>b+1\)nên \(3b+1=225;75;45;25\)và \(b+1=1;3;5;9\)
Mặt khác, ta có: \(3b+1\)chia cho \(3\) dư \(1\)
Do đó: \(3b+1=25;b+1=9\)
\(\Rightarrow b=8\)
Vậy, \(a=0;b=8\)