K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

) Ta có: ab = ƯCLN(a, b). BCNN(a, b) = 15. 180 = 2 700.

Vì ƯCLN(a, b) = 15 nên a ⁝ 15, b ⁝ 15, ta giả sử a = 15m, b = 15 n. Do a < b nên m < n; m, n ∈ N* và ƯCLN(m, n) = 1.

Ta có: ab = 2 700

15m. 15n = 2 700

m. n. 225 = 2 700

        m. n = 2 700: 225

        m. n = 12 = 1. 12 = 2. 6 = 3. 4

Vì m và n là hai số nguyên tố cùng nhau, m < n và có tích là 12 nên ta có:

(m; n) ∈{(1; 12); (3; 4)}

+) Với (m; n) = (1; 12) thì a = 1. 15 = 15; b = 12. 15 = 180.

+) Với (m; n) = (3; 4) thì a = 3. 15 = 45; b = 4. 15 = 60.

a) Ta có: ab = ƯCLN(a, b). BCNN(a, b) = 15. 180 = 2 700.

Vì ƯCLN(a, b) = 15 nên a ⁝ 15, b ⁝ 15, ta giả sử a = 15m, b = 15 n. Do a < b nên m < n; m, n ∈ N* và ƯCLN(m, n) = 1.

Ta có: ab = 2 700

15m. 15n = 2 700

m. n. 225 = 2 700

        m. n = 2 700: 225

        m. n = 12 = 1. 12 = 2. 6 = 3. 4

Vì m và n là hai số nguyên tố cùng nhau, m < n và có tích là 12 nên ta có:

(m; n) ∈{(1; 12); (3; 4)}

+) Với (m; n) = (1; 12) thì a = 1. 15 = 15; b = 12. 15 = 180.

+) Với (m; n) = (3; 4) thì a = 3. 15 = 45; b = 4. 15 = 60.

Vậy các cặp (a; b) thỏa mãn là (15; 180); (45; 60).

b) Ta có: ab = ƯCLN(a, b). BCNN(a, b) = 11. 484 = 5 324.

Vì ƯCLN(a, b) = 11 nên  , ta giả sử a = 11m, b = 11n. Do a < b nên m < n; m, n ∈ N*  và ƯCLN(m, n) = 1.

Ta có: ab = 5 324

11m. 11n = 5 324

m. n. 121 = 5 324

        m. n = 5 324: 121

        m. n = 44 = 1. 44 = 4. 11 

Vì m và n là hai số nguyên tố cùng nhau, m < n và có tích là 44 nên ta có:

(m; n) ∈{(1; 44); (4; 11)}

+) Với (m; n) = (1; 44) thì a = 1. 11 = 11; b = 44. 11 = 484.

+) Với (m; n) = (4; 11) thì a = 4. 11 = 44; b = 11. 11 = 121.

Vậy các cặp (a; b) thỏa mãn là (11; 484); (44; 121).

15 tháng 10 2023

 Trước tiên, ta cần chứng minh 2 bổ đề sau:

 Bổ đề 1: Cho 2 số tự nhiên \(a,b\) khác 0. Khi đó  \(ƯCLN\left(a,b\right).BCNN\left(a,b\right)=a.b\)

 Bổ đề 2: Cho 2 số tự nhiên \(a,b\) khác 0. Khi đó:\(ƯCLN\left(a,b\right)+BCNN\left(a,b\right)\ge a+b\)

 Chứng minh:

 Bổ đề 1: Đặt \(\left(a,b\right)=1\) (từ nay ta sẽ kí hiệu \(\left(a,b\right)=ƯCLN\left(a,b\right)\) và \(\left[a;b\right]=BCNN\left(a,b\right)\) cho gọn) \(\Rightarrow\left\{{}\begin{matrix}a=dk\\b=dl\end{matrix}\right.\left(\left(k,l\right)=1\right)\)

  Nên \(\left[a,b\right]=dkl\) \(\Rightarrow\left(a;b\right)\left[a;b\right]=dk.dl=ab\). Ta có đpcm.

 Bổ đề 2: Vẫn giữ nguyên kí hiệu như ở chứng minh bổ đề 1. Ta có \(k\ge1,l\ge1\) nên \(\left(k-1\right)\left(l-1\right)\ge0\)

 \(\Leftrightarrow kl-k-l+1\ge0\)

 \(\Leftrightarrow kl+1\ge k+l\)

 \(\Leftrightarrow dkl+d\ge dk+dl\)

 \(\Leftrightarrow\left[a,b\right]+\left(a,b\right)\ge a+b\) (đpcm)

Vậy 2 bổ đề đã được chứng minh.

a) Áp dụng bổ đề 1, ta có \(ab=\left(a,b\right)\left[a,b\right]=15.180=2700\) và \(a+b\le\left(a,b\right)+\left[a,b\right]=195\). Do \(b\ge a\) \(\Rightarrow a^2\le2700\Leftrightarrow a\le51\)

 Mà \(15|a\) nên ta đi tìm các bội của 15 mà nhỏ hơn 51:

  \(a\in\left\{15;30;45\right\}\)

 Khi đó nếu \(a=15\) thì \(b=180\) (thỏa)

 Nếu \(a=30\) thì \(b=90\) (loại)

 Nếu \(a=45\) thì \(b=60\) (thỏa)

 Vậy có 2 cặp số a,b thỏa mãn ycbt là \(15,180\) và \(45,60\)

Câu b làm tương tự.

15 tháng 10 2023

 Ko bt

11 tháng 10 2021

a) Ta có: ab = ƯCLN(a, b). BCNN(a, b) = 15. 180 = 2 700.

Vì ƯCLN(a, b) = 15 nên a ⁝ 15, b ⁝ 15, ta giả sử a = 15m, b = 15 n. Do a < b nên m < n; m, n ∈ N* và ƯCLN(m, n) = 1.

Ta có: ab = 2 700

15m. 15n = 2 700

m. n. 225 = 2 700

        m. n = 2 700: 225

        m. n = 12 = 1. 12 = 2. 6 = 3. 4

Vì m và n là hai số nguyên tố cùng nhau, m < n và có tích là 12 nên ta có:

(m; n) ∈{(1; 12); (3; 4)}

+) Với (m; n) = (1; 12) thì a = 1. 15 = 15; b = 12. 15 = 180.

+) Với (m; n) = (3; 4) thì a = 3. 15 = 45; b = 4. 15 = 60.

Vậy các cặp (a; b) thỏa mãn là (15; 180); (45; 60).

11 tháng 10 2021

Nguồn : https://vietjack.com/sbt-toan-6-ket-noi/bai-2-51-trang-43-sbt-toan-lop-6-tap-1-ket-noi.jsp

b) Ta có: ab = ƯCLN(a, b). BCNN(a, b) = 11. 484 = 5 324.

Vì ƯCLN(a, b) = 11 nên  , ta giả sử a = 11m, b = 11n. Do a < b nên m < n; m, n ∈ N*  và ƯCLN(m, n) = 1.

Ta có: ab = 5 324

11m. 11n = 5 324

m. n. 121 = 5 324

        m. n = 5 324: 121

        m. n = 44 = 1. 44 = 4. 11 

Vì m và n là hai số nguyên tố cùng nhau, m < n và có tích là 44 nên ta có:

(m; n) ∈{(1; 44); (4; 11)}

+) Với (m; n) = (1; 44) thì a = 1. 11 = 11; b = 44. 11 = 484.

+) Với (m; n) = (4; 11) thì a = 4. 11 = 44; b = 11. 11 = 121.

Vậy các cặp (a; b) thỏa mãn là (11; 484); (44; 121).

19 tháng 12 2021

a: a=36

b=6

19 tháng 12 2021

bài này t biết làm nè nhưng dài quá bạn có zalo ko mik chụp cho

Ta có : 

a.b = 300. 15 = 4500 ( a ≥ b )

a = 15.m ; b = 15. n và UCLN(m,n) = 1 (m ≥ n)

Lại có :

a . b = 4500

15 .m . 15. n = 4500

225 . (m . n) = 4500

m.n = 20

Ta có bảng sau :

m |   5    |     20                             Thử lại : a + 15 = b                             a + 15 = b

n  |   4    |     1                                             60 + 15 = 75 ( chọn )            15 + 15 = 300 ( loại )

a  |   75  |      300                         Vậy (a,b ) = ( 75 ; 60 )

b  |    60 |       15