\(\frac{a+3}{a-1}\) có giá trị bằng một số tự nhiên
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 10 2017

mk chưa học đến

11 tháng 11 2018

\(\frac{16}{3n+1}\in N\)

\(\Rightarrow16⋮3n+1\Rightarrow U\left(16\right):3\left(du1\right)\)

\(\Rightarrow3n+1\in\left\{1;4;16\right\}\)

\(\Rightarrow n\in\left\{0;1;5\right\}\)

3 tháng 8 2016

 Câu 1 : Tìm tất cả các phân số bằng phân số \(\frac{-32}{48}\)  và có mẫu là số tự nhiên nhỏ hơn 15

10 tháng 9 2016

của violympic?

Đúng không?

Của vòng 1 à?!

10 tháng 4 2019

n+3/3=n/3+1         (1)

ta có tử càng lớn thì ps càng lớn

vì k co số tn lớn nhất nên n thuộc rỗng

b, theo (1) ta có 

vì 1 là stn nên để a là stn thì n/3 cũng phải là số tn

để n/3 là stn thì n chia hết cho 3

=> n thuộc Ư(3)

12 tháng 2 2016

ai làm giúp mìnk vs!!!

12 tháng 2 2016

help me!!!!!!!!!

16 tháng 3 2018

Giải từng bài 

Bài 1 : 

Ta có : 

\(\frac{23+n}{40+n}=\frac{3}{4}\)

\(\Leftrightarrow\)\(4\left(23+n\right)=3\left(40+n\right)\)

\(\Leftrightarrow\)\(92+4n=120+3n\)

\(\Leftrightarrow\)\(4n-3n=120-92\)

\(\Leftrightarrow\)\(n=28\)

Vậy số cần tìm là \(n=28\)

Chúc bạn học tốt ~ 

16 tháng 3 2018

Bài 2 : 

\(a)\) Gọi \(ƯCLN\left(12n+1;30n+2\right)=d\)

\(\Rightarrow\)\(\hept{\begin{cases}12n+1⋮d\\30n+2⋮d\end{cases}\Rightarrow\hept{\begin{cases}5\left(12n+1\right)⋮d\\2\left(30n+2\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}60n+5⋮d\\60n+4⋮d\end{cases}}}\)

\(\Rightarrow\)\(\left(60n+5\right)-\left(60n+4\right)⋮d\)

\(\Rightarrow\)\(1⋮d\)

\(\Rightarrow\)\(d\inƯ\left(1\right)=\left\{1;-1\right\}\)

\(\Rightarrow\)\(ƯCLN\left(12n+1;30n+2\right)=\left\{1;-1\right\}\)

Vậy \(A=\frac{12n+1}{30n+2}\) là phân số tối giản với mọi giá trị nguyên n 

Chúc bạn học tốt ~ 

12 tháng 1 2019

Làm ơn có ai làm giúp mình đi! Một bài thôi cũng được.

10 tháng 4 2019

Này m đk lm đề này ak , t bh mới đk cô cho lm . Mẹ khó vãi , mỗi câu đầu m hỏi t làm đk thôi

25 tháng 3 2017

VD tổng nghịch đâỏ cảu ba số này là 2 thì:
Số lớn nhất là a, số nhỏ nhất là c.
Ta có: c ≤ b ≤ a (1)
Theo giả thiết : \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\) = 2 (2)
Do (1) nên 2 = \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)\(\dfrac{3}{c}\)
Vậy c = 1
Thay vào (2) ta dc :\(\dfrac{1}{a}+\dfrac{1}{b}\) = 1 ≤ \(\dfrac{2}{b}\)
Vậy a = 2 từ đó b = 2
3 số cần tìm là 1; 2; 2.