K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 1 2017

đang cần gấp câu này nè 

6 tháng 3 2017

Giải:

Theo đề bài ta có:

\(\left\{\begin{matrix}2014a+3b+1\\2014^a+2014a+b\end{matrix}\right.\) là hai số lẻ

Nếu \(a\ne0\Rightarrow2014^a+2014a\) là số chẵn

Để \(2014^a+2014a+b\) là số lẻ \(\Rightarrow b\) phải là số lẻ

Nếu \(b\) là số lẻ \(\Rightarrow3b+1\) là số chẵn, do đó:

\(2014a+3b+1\) là số chẵn (không thỏa mãn)

Vậy \(a=0\)

Với \(a=0\Rightarrow\left(3b+1\right)\left(b+1\right)=225\)

\(b\in N\)

\(\Rightarrow\left(3b+1\right)\left(b+1\right)=3.75=5.45=9.25=1.225\)

\(3b+1⋮̸\)\(3;3b+1>b+1\)

\(\Rightarrow\left\{\begin{matrix}3b+1=25\\b+1=9\end{matrix}\right.\)\(\Rightarrow b=8\)

Vậy: \(\left\{\begin{matrix}a=0\\b=8\end{matrix}\right.\)

5 tháng 1 2022

\(\dfrac{1}{a+1}+\dfrac{1}{b+1}=\dfrac{1}{2}\left(a,b\ne-1\right)\\ \Rightarrow2\left(a+b+2\right)=\left(a+1\right)\left(b+1\right)\\ \Rightarrow2a+2b+4=ab+a+b+1\\ \Rightarrow a+b-ab+3=0\\ \Rightarrow\left(b-1\right)-a\left(b-1\right)=-4\\ \Rightarrow\left(a-1\right)\left(b-1\right)=4=1\cdot4=2\cdot2\)

\(a-1\)142
\(b-1\)412
\(a\)253
\(b\)523

Vậy \(\left(a;b\right)=\left(2;5\right);\left(5;2\right);\left(3;3\right)\)

5 tháng 1 2022

\(\dfrac{1}{a+1}+\dfrac{1}{b+1}=\dfrac{1}{2}\Leftrightarrow\dfrac{2\left(a+1\right)+2\left(b+1\right)-\left(a+1\right)\left(b+1\right)}{2\left(a+b\right)\left(b+1\right)}=0\)

\(\Leftrightarrow a+b-ab+3=0\Leftrightarrow a\left(1-b\right)-\left(1-b\right)=-4\Leftrightarrow\left(a-1\right)\left(1-b\right)=-4\)

Do \(a,b\in N\) nên ta có bảng sau:

a-1-11-44-22
1-b4-41-12-2
a02-3(loại)5-1(loại)3
b-3(loại)502-1(loại)3

Vậy \(\left(a;b\right)\in\left\{\left(2;5\right);\left(5;2\right);\left(3;3\right)\right\}\)