K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 4 2021

x và y là 2 nghiệm của pt:\(t^2-10t+9=0\)

ta có:a+b+c=1-10+9=0

⇒Pt có 2 nghiệm phân biệt

t1=1     : t2=\(\dfrac{9}{1}\)=9

Vậy (1;9) hoặc (9;1) thì thỏa  \(\left\{{}\begin{matrix}x+y=10\\xy=9\end{matrix}\right.\)

x+y=10 và xy=9

=>x,y là các nghiệm của phương trình là:

a^2-10a+9=0

=>a=1 hoặc a=9

=>(x,y)=(1;9) hoặc (x,y)=(9;1)

1 tháng 8 2018

Câu hỏi lỗi rồi :))

AH
Akai Haruma
Giáo viên
4 tháng 4 2020

a)

HPT \(\Leftrightarrow \left\{\begin{matrix} 4x+8y=0(1)\\ 4x+2y=-3(2)\end{matrix}\right.\)

Lấy $(1)-(2)$ ta thu được: $8y-2y=3$

$\Leftrightarrow 6y=3\Leftrightarrow y=\frac{1}{2}$

Khi đó: $x=\frac{-4y}{2}=-2y=-1$

Vậy..........

b)

HPT \(\Leftrightarrow \left\{\begin{matrix} 2x-y=-4(1)\\ 2x+4y=-6(2)\end{matrix}\right.\)

Lấy $(1)-(2)$ suy ra: $-y-4y=-4-(-6)$

$\Leftrightarrow -5y=2\Rightarrow y=\frac{-2}{5}$

$\Rightarrow x=-3-2y=\frac{-11}{5}$

AH
Akai Haruma
Giáo viên
4 tháng 4 2020

c)

HPT \(\Leftrightarrow \left\{\begin{matrix} xy+2x-15y-30=xy\\ xy-x+15y-15=xy\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} 2x-15y=30\\ -x+15y=15\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} 2x-15y=30(1)\\ -2x+30y=30(2)\end{matrix}\right.\)

Lấy $(1)+(2)$ suy ra $-15y+30y=60$

$\Leftrightarrow 15y=60\Leftrightarrow y=4$

$\Rightarrow x=15y-15=45$

Vậy.......

d)

HPT \(\Leftrightarrow \left\{\begin{matrix} \frac{2}{x}+\frac{2}{y}=10(1)\\ \frac{2}{x}+\frac{5}{y}=7(2)\end{matrix}\right.\)

Lấy \((2)-(1)\Rightarrow \frac{3}{y}=7-10=-3\Rightarrow y=-1\)

\(\Rightarrow \frac{1}{x}=5-\frac{1}{y}=5-\frac{1}{-1}=6\Rightarrow x=\frac{1}{6}\)

Vậy........

24 tháng 2 2018

Câu 1 \(\left\{{}\begin{matrix}2x+2y+2xy=10\left(1\right)\\x^2+y^2=5\left(2\right)\end{matrix}\right.\)

=>2.(2) - (1)=\(\left(x-1\right)^2+\left(y-1\right)^2+\left(x-y\right)^2=0\)

<=>\(\left\{{}\begin{matrix}x-1=0\\y-1=0\\x-y=0\end{matrix}\right.\) =>x=y=1

Câu 2 dùng vi-et đảo

Câu 3 rút x=y+1 từ pt trên rồi thế xuống dưới

Câu 4 lấy pt trên cộng pt dưới rồi xét dấu GTTĐ

AH
Akai Haruma
Giáo viên
20 tháng 1

Lời giải:

a.

 

Từ $x+y=2\Rightarrow y=2-x$. Thay vào PT(2):
$(m+1)x+m(2-x)=7$

$\Leftrightarrow x+2m=7$

$\Leftrightarrow x=7-2m$

$y=2-x=2-(7-2m)=2m-5$

Vậy hpt có nghiệm $(x,y)=(7-2m, 2m-5)(*)$

Nếu $x,y$ có 1 số $\geq 0$, một số $\leq 0$ thì $xy\leq 0< 1$

Nếu $x,y$ cùng $\geq 0$ thì áp dụng BĐT Cô-si:

$2=x+y\geq 2\sqrt{xy}\Rightarrow xy\leq 1$

Vậy tóm lại $xy\leq 1(**)$
Từ $(*); (**)$ suy ra với mọi $m$ thì hpt luôn có nghiệm $x,y$ thỏa mãn $xy\leq 1$

b.

$xy>0$

$\Leftrightarrow (7-2m)(2m-5)>0$

$\Leftrightarrow 7> 2m> 5$

$\Leftrightarrow \frac{7}{2}> m> \frac{5}{2}$

Do $m$ nguyên nên $m=3$

Thử lại thấy đúng.

 

3 tháng 4 2020

a,\(\left\{{}\begin{matrix}x=35\left(y+2\right)\\x=50\left(y-1\right)\end{matrix}\right.\)

suy ra :35(y+2)=50(y-1)

=>35y+70=50y-50

=>y=8

=>x=350

vậy :\(\left\{{}\begin{matrix}x=350\\y=8\end{matrix}\right.\)

b.\(\left\{{}\begin{matrix}y=2x-3\\y=x-1\end{matrix}\right.\)

suy ra: 2x-3=x-1

=>x=2

=>y=1

vậy \(\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)

c.\(\left\{{}\begin{matrix}\left(x+14\right).\left(y-2\right)=xy\\\left(x-4\right).\left(y-1\right)=xy\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}-2x+14=0\\-x-y=0\end{matrix}\right.\)

vậy:\(\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)

d,\(\left\{{}\begin{matrix}y=\frac{6-x}{4}\\y=\frac{4x-5}{3}\end{matrix}\right.\)

x=2

y=1

vậy...

8 tháng 1 2022

\(\left\{{}\begin{matrix}x>y\\xy=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-y>0\\xy=1\end{matrix}\right.\)

\(P=\dfrac{x^2+y^2}{x-y}=\dfrac{\left(x-y\right)^2+2xy}{x-y}=x-y+\dfrac{2xy}{x-y}=x-y+\dfrac{2}{x-y}\ge2\sqrt{\left(x-y\right)\left(\dfrac{2}{x-y}\right)}=2\sqrt{2}\Rightarrow MinP=2\sqrt{2}\)

28 tháng 9 2021

\(\begin{cases} xy=20\\ x+y=9 \end{cases} \)

\(\Leftrightarrow\)\(\begin{cases} xy=20 (1)\\ x=9-y (2) \end{cases} \)

Thế (2) vào (1) ta được:

\((9-y)y=20\)

\(\Leftrightarrow\)\(9y-y^2-20=0\)

\(\Leftrightarrow\)\(\begin{cases} y=4\\ y=5 \end{cases} \)

Với y = 4 thay vào (2) ta được x = 5

Với y = 5 thay vào (2) ta được x = 4

28 tháng 9 2021

Giải thích giúp mình tại sao 9y-y^2-20=0 mà ra đc 2 nghiệm y=4; y=5 dc k

Để hệ phương trình có nghiệm duy nhất thì \(\dfrac{1}{m}\ne\dfrac{m}{1}\)

=>\(m^2\ne1\)

=>\(m\notin\left\{1;-1\right\}\)

Khi \(m\notin\left\{1;-1\right\}\) thì \(\left\{{}\begin{matrix}x+my=m+1\\mx+y=2m\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=m+1-my\\m\left(m+1-my\right)+y=2m\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=m+1-my\\m^2+m-m^2y+y-2m=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y\left(-m^2+1\right)=-m^2+m\\x=m+1-my\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=\dfrac{m^2-m}{m^2-1}=\dfrac{m\left(m-1\right)}{\left(m-1\right)\left(m+1\right)}=\dfrac{m}{m+1}\\x=m+1-\dfrac{m^2}{m+1}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=\dfrac{m}{m+1}\\x=\dfrac{\left(m+1\right)^2-m^2}{m+1}=\dfrac{2m+1}{m+1}\end{matrix}\right.\)

Để \(\left\{{}\begin{matrix}x>=2\\y>=1\end{matrix}\right.\) thì \(\left\{{}\begin{matrix}\dfrac{2m+1}{m+1}>=2\\\dfrac{m}{m+1}>=1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\dfrac{2m+1-2\left(m+1\right)}{m+1}>=0\\\dfrac{m-m-1}{m+1}>=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\dfrac{2m+1-2m-2}{m+1}>=0\\\dfrac{-1}{m+1}>=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}-\dfrac{1}{m+1}>=0\\-\dfrac{1}{m+1}>=0\end{matrix}\right.\Leftrightarrow m+1< 0\)

=>m<-1